Sistemas de ecuaciones lineales (3ºESO Académicas)
De Wikipedia
Revisión de 17:14 30 oct 2016 Coordinador (Discusión | contribuciones) (→Método grafico de resolución de sistemas de ecuaciones lineales 2x2) ← Ir a diferencia anterior |
Revisión de 17:18 30 oct 2016 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 23: | Línea 23: | ||
{{p}} | {{p}} | ||
+ | ==Método grafico de resolución de sistemas de ecuaciones lineales 2x2== | ||
+ | {{Método grafico de resolución de sistemas de ecuaciones lineales 2x2}} | ||
+ | {{p}} | ||
+ | ===Ejercicios propuestos=== | ||
+ | {{ejercicio | ||
+ | |titulo=Ejercicios propuestos: ''Sistemas de ecuaciones lineales'' | ||
+ | |cuerpo= | ||
+ | (Pág. 124) | ||
+ | [[Imagen:red_star.png|12px]] 2 | ||
+ | |||
+ | }} | ||
+ | {{p}} | ||
[[Categoría: Matemáticas]][[Categoría: Álgebra]] | [[Categoría: Matemáticas]][[Categoría: Álgebra]] |
Revisión de 17:18 30 oct 2016
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
(Pág. 125)
Sistemas de ecuaciones lineales 2x2
- Un sistema de dos ecuaciones de primer grado con dos incógnitas o simplemente, sistema 2x2 de ecuaciones lineales, es la agrupación de dos ecuaciones de primer grado con dos incógnitas:
- Se llama solución de un sistema 2x2, a cualquier pareja de valores que sea solución de ambas ecuaciones a la vez. Las soluciones de este tipo de sistemas son los puntos de corte de las rectas que representan cada una de las ecuaciones del sistema.
Ejemplo: Solución de un sistema de ecuaciones
Comprueba si las parejas de números (1,2) y (-1,3) son o no soluciones del sistema:
- Para comprobar si (1,2) es solución, sustituimos x=1 e y=2 en las dos ecuaciones del sistema:
Como no se verifican las dos ecuaciones, la pareja (1,2) no es solución del sistema.
- Para comprobar si (-1,3) es solución, sustituimos x=-1 e y=3 en las dos ecuaciones del sistema:
Ejercicios de autoevaluación sobre sistemas de ecuaciones lineales.
Comprueba soluciones de sistemas de ecuaciones lineales.
Ejercicios propuestos
Ejercicios propuestos: Sistemas de ecuaciones lineales |
Método grafico de resolución de sistemas de ecuaciones lineales 2x2
Procedimiento
Para resolver un sistema de ecuaciones lineales, representaremos gráficamente las rectas de las soluciones de cada una de las ecuaciones:
- Si las rectas se cortan, el punto de corte será la única solución del sistema.
- Si las rectas son paralelas, el sistema no tendrá solución.
- Si las rectas son coincidentes, el sistema tendrá infinitas soluciones.
Resolución de sistemas por el método grafico. Ejemplos.
Tutorial en el que se muestra la resolución de sistemas de ecuaciones lineales (grado 1) de dos variables por el método gráfico.
- 00:00 a 01:50: Definiciones iniciales.
- 01:50 a 15:10: Explicación del método gráfico. Ejemplo 1.
- 15:10 a 18:40: Ejemplo 2.
- 18:40 a 22:30: Explicación de los distintos tipos de sistema en función a sus soluciones. Ejemplos 3-4-5.
- 22:30 a Fin: Utilización de la aplicación online DESMOS para la resolución de sistemas de ecuaciones.
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
1) Resuelve gráficamente:
2) Dada la gráfica (ver video), obtén la solución aproximada del sistema.
3) Resuelve gráficamente:
- Actividad en la que aprenderás a resolver gráficamente un sistema de ecuaciones lineales con dos incógnitas.
- Actividad en la que deberás comprobar si una pareja de números son o no solución de un sistema.
Escena en la que podrás representar graficamente un sistema lineal 2x2 y resolverlo gráficamente.
Resolución de sistemas de ecuaciones por medio de gráficas.
Actividad: Método grafico de resolución de sistemas lineales 2x2 Resuelve los siguientes sistemas por el método gráfico:
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Ejercicios propuestos
Ejercicios propuestos: Sistemas de ecuaciones lineales |