Posición relativa de dos rectas
De Wikipedia
(Diferencia entre revisiones)
Revisión de 17:02 7 ago 2007
Menú:
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | Proporcionalidad directa | Ejercicios Ecuación pto-pendiente Ecuaciones de la recta | WIRIS Geogebra Calculadora Función lineal Recta |
[editar]
Posición relativa de dos rectas
Dos rectas del plano pueden ocupar una de las tres posiciones siguientes:
- Secantes: Se cortan en un punto.
- Paralelas: No se cortan.
- Coincidentes: Tienen infinitos puntos en común, son la misma recta.
Para determinar la posición relativa de dos rectas podemos recurrir a la resolución del sistema formado por las dos ecuaciones.
Dependiendo del número de soluciones del sistema tendremos:
- 1 solución: Las rectas son secantes.
- 0 soluciones: Las rectas son paralelas.
- Infinitas soluciones: Las rectas son coincidentes.
También se puede recurrir a comparar las pendientes y las ordenadas en el origen de cada recta:
- Distintas pendientes: Las rectas son secantes.
- Igual pendiente y distinta ordenada en el origen: Las rectas son paralelas.
- Igual pendiente e igual ordenada en el origen: Las rectas son coincidentes.