Semejanza de triángulos
De Wikipedia
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | Triángulos | Semejanza | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Triángulos semejantes
Se dice que dos figuras geométricas, y en particular dos triángulos, son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes.
Matemáticamente, la semejanza de triángulos la podemos expresar de la siguiente manera:
|
(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.
Nota: Cuando veamos los criterios de semejanza de triángulos, veremos que para que dos triángulos sean semejantes bastará con que se cumpla una de las dos condiciones: que los lados homólogos sean proporcionales o que los ángulos homólogos sean iguales. En tal caso, la otra condición se cumplirá automáticamente.
Teorema de Tales
Primer teorema de Tales
Dos rectas paralelas, AB y A'B', que cortan a dos rectas secantes, d y d', determinan en éstas segmentos proporcionales:
|
Demostración del primer teorema de Tales.
Ejemplo de aplicación del teorema de Tales.
Ejemplo de aplicación del teorema de Tales.
Ejemplo de aplicación del teorema de Tales.
Ejemplo de aplicación del teorema de Tales.
Ejemplo de aplicación del teorema de Tales.
En esta escena podrás comprobar el primer teorema de Tales.
Triángulos en la posición de Tales
Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la posición de Tales Tutorial 1 (7´18") Sinopsis: Teorema de Tales. Ejemplos. Tutorial 2 (23´57") Sinopsis: Tutorial en el que se explica y trabaja el teorema de Tales y se resuelven algunos ejercicios sencillos en los que se aplican dichas propiedades.
Ejercicio 1 (3'28") Sinopsis: División de un segmento en partes proporcionales. Ejercicio 2 (2'43") Sinopsis: Dibujo y cálculo del 4º proporcional a tres segmentos dados. Ejercicio 3 (2'51") Sinopsis: Cálculo y dibujo del 3º proporcional a dos segmentos dados. Ejercicio 4 (2´29") Sinopsis: Ejercicio de aplicación del primer teorema de Tales. Ejercicio 5 (7´19") Sinopsis: Ejercicio de aplicación del primer teorema de Thales. Tutorial (3´23") Sinopsis: Otra forma equivalente de enunciar el teorema de Tales utilizando la semejanza de triángulos: Dos triángulos encajados (en la posición de Tales) son semejantes y en consecuencia sus lados son proporcionales. Ejemplo 1 (1´14") Sinopsis: Ejemplo de aplicación del teorema de Tales. Ejemplo 2 (3´30") Sinopsis: Ejemplo de aplicación del teorema de Tales. Ejemplo 3 (3´24") Sinopsis: Ejemplo de aplicación del teorema de Tales. Ejemplo 4 (3´22") Sinopsis: Ejemplo de aplicación del teorema de Tales. Ejemplo 5 (2´10") Sinopsis: Ejemplo de aplicación del teorema de Tales. Ejemplo 5 (3´07") Sinopsis: Ejemplo de aplicación del teorema de Tales. |
Criterios de semejanza de triángulos
Los criterios de semejanza de triángulos simplifican el número de condiciones que deben comprobarse para que dos triángulos sean semejantes:
Criterios de semejanza de triángulos
- Dos triángulos son semejantes si tienen los lados proporcionales:
- Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales:
- Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo comprendido:
Actividades para aprender y practicar los criterios de semejanza de triángulos.
Tutorial en el que se explica y trabaja los criterios de semejanza de triángulos y se resuelven algunos ejercicios sencillos en los que se aplican dichas propiedades.
- 00:00 a 06:08: Criterios de Igualdad (Congruencia) de Triángulos.
- 06:08 a 08:30: Definición de Triángulos Semejantes.
- 08:30 a 15:30: 1er criterio de semejanza, lados proporcionales.
- 11:00 - Ejemplo del 1er criterio de semejanza.
- 15:30 a 21:30: 2º criterio de semejanza, ángulos iguales.
- 17:00 - Ejemplo del 2º criterio de semejanza.
- 21:30 a 26:30: 3er criterio de semejanza, ángulo igual y sus lados proporcionales.
- 23:05 - Ejemplo del 3er criterio de semejanza.
- 26:30 a 32:54 : Ejercicio donde se aplica la semejaza de triángulos.
Ejemplos de aplicación de los criterios de semejanza.
Los lados de un triángulo miden 3, 4 y 6 cm, y los lados de otro triángulo miden 9,12 y 18 cm. Comprueba si son semejantes.
Dos ángulos de un triángulo miden 55º y 85º, y dos de los ángulos de otro triángulo miden 55º y 65º. ¿Son semejantes?.
Cálculo altura inaccesible usando dos triángulos semejantes
En esta escena podrás ver los tres criterios de semejanza de triángulos.
Aplicaciones de los criterios de semejanza
En esta escena podrás hallar la altura de una casa utilizando un espejo y una cinta métrica.
Cuenta la historia que un sacerdote egipcio le preguntó a Tales de Mileto (s. IV a. C) a cerca de la altura de la Pirámide de Keops, cuando ya las pirámides rondaban los 2.000 años de edad, y éste respondió con un método de lo más ingenioso para medir dicha altura..
Actividad Interactiva: Aplicaciones de los criterios de semejanza
Actividad 1: Cálculo de la altura conocida la sombra.
Actividad: La distancia del Sol a la Tierra es muy grande comparada con la tierra y con los objetos que hay sobre ella, de forma que podemos considerar que los rayos del Sol sobre objetos próximos son paralelos. En consecuencia, los triángulos que forma tienen sus ángulos iguales y, por tanto, son semejantes. Entonces, al ser los lados de los triángulos proporcionales, tenemos: expresión de la cual, conocidos , y , podemos despejar .
Actividad 2: Halla la altura de un árbol con la ayuda de un espejo y una cinta métrica.
Actividad: Los triángulos ABC y A'BC' son semejantes. ¿Por qué? En el punto B se coloca un espejo de forma que desde A se vea el extremo del árbol a través de él. Calcula la altura del árbol. Pon como distancia AC tu altura (del suelo a tus ojos) y sitúa el punto C donde te parezca más conveniente. La altura calculada ¿depende de la altura del observador y de donde se sitúe?
Actividad 3: Semejanza en triángulos rectángulos.
Actividad: El triángulo ABC es rectángulo, y también lo son los triángulos ACM y BCM. Toma las medidas que necesites para comprobar que los dos triángulos coloreados son semejantes. También se puede comprobar que son semejantes si nos fijamos en sus ángulos. ¿Por qué? Además, cada uno de ellos de los dos triángulos es también semejante al triángulo ABC. ¿Por qué? |