Problemas de proporcionalidad (3ºESO Académicas)
De Wikipedia
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
(Pág. 44)
Proporcionalidad simple
Proporcionalidad simple directa
Ejercicio resuelto: Proporcionalidad simple directa
Para transportar 120000 l de agua, se necesitan 8 camiones cisterna. ¿Cuántos camiones se necesitarán para transportar 315000 l?
A más volumen de agua a transportar, más camiones se necesitarán. Las magnitudes "volumen de agua" y "nº de camiones" son directamente proporcionales:
Regla de tres simple directa:
Volumen (l) nº camiones ---------- D ----------- 120000 ------> 8 315000 ------> x | camiones |
Proporcionalidad simple inversa
Ejercicio resuelto: Proporcionalidad simple inversa
6 pintores tardan 8 días en pintar una casa. ¿Cuánto tardarán 4 pintores en realizar la misma tarea?
A menos pintores, más días tardarán en hacer la misma tarea. Las magnitudes "nº de pintores" y "tiempo" son inversamente proporcionales:
Regla de tres simple inversa:
nº pintores tiempo (días) ----------- I ------------ 6 ------> 8 4 ------> x | días |
(Pág. 45)
Proporcionalidad compuesta
Ejercicio resuelto: Proporcionalidad compuesta
Un solador embaldosa 260 m2 de suelo en 5 días trabajando 8 horas diarias. Se compromete a embaldosar un suelo de 500 m2 en 7 días. ¿Cuántas horas diarias tiene que trabajar?
Tenemos tres variables: Superficie, número de días y numero de horas diarias.
Si fijamos la superficie, a máyor número de días, menor número de horas de trabajo diarias: La proporcionalidad es inversa. Si fijamos el número de días, a mayor superficie, mayor número de horas de trabajo diarias: La proporcionalidad es directa. Superficie Nº de días Nº horas diarias ---------- ---------- I ---------------- 260 ------> 5 ------> 8 500 ------> 7 ------> x └---------------------------------------┘ D |
horas diarias
|
Ejercicios propuestos
Ejercicios propuestos: Proporcinalidad |