Expresión analítica de una función (3ºESO Académicas)
De Wikipedia
Tabla de contenidos[esconder] |
(Pág. 152)
Expresión analítica de una función
La expresión analítica de una función es una ecuación que relaciona la variable dependiente con la variable independiente.
Ejemplo: Expresión analítica de una función
Un rectángulo mide 2 cm más de largo que de ancho.
- Halla la expresión analítica de la función que relaciona su área con su lado menor. Halla su dominio.
- Halla la expresión analítica de la función que relaciona su perímetro con su lado menor. Halla su dominio.
- Haz una tabla de valores para cada función.
- Representa gráficamente las dos funciones anteriores.
Actividad: Expresión analítica de una función Unos alumnos de ESO disponen de una cuerda de 24 metros de longitud. Con ella deben construir rectángulos en el patio de su centro. 1. Haz una tabla de valores donde se relacione la base de los rectángulos y su área. 2. Halla una expresión que te permita calcular el área de cualquiera de esos rectángulos, conocida su base. 3. ¿Para que valor de la base se consigue un rectángulo de área máxima?. ¿Qué tiene de particular es valor? |
Determinación del dominio de una función
El dominio de una función puede estar determinado o limitado por diferentes razones:
- Imposibilidad de realizar alguna operación con ciertos valores de
(Por ejemplo, si en la expresión analítica aparecen denominadores que se anulan o radicandos que toman valores negativos)
- Contexto en el que se estudia la función (Por ejemplo, una función que relaciona lado y área de una figura plana, el lado no puede tomar valores negativos)
- Por voluntad de quien propone la función (A veces nos puede interesar estudiar sólo un trozo de la función).
Ejemplos: Dominio de una función dada por una expresión analítica
- Halla el dominio de las funciones:
- a)
- a)
- b)
- b)
- c)
- c)
- d)
(Área de un cuadrado de lado
)
- d)
Variables discretas y continuas
En una función, la variable independiente puede ser:
- Continua: Si toma valores en intervalos. En consecuencia, siempre toma infinitos valores. La gráfica de la función estará formada por trazos.
- Discreta: Si los valores que toma la variable están separados (no toma valores en ningún intervalo). Puede tomar un número finito o infinito de valores. La gráfica de la función estará formada por puntos separados.
Ejercicio resuelto: Variables discretas y continuas Poner una anuncio por palabras cuesta una cantidad fija de 0.50 €, más 0.05 € por cada palabra.
|
Ejercicios propuestos
Ejercicios propuestos: Expresión analítica de una función |