Plantilla:Función inversa (1ºBach)
De Wikipedia
Función inversa o recíproca
Si ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Propiedades Sea
donde |
Obtención de la expresión analítica de la función inversa
Procedimiento
Para hallar la inversa de y=f(x):
- Se despeja la "x" para ponerla en función de la "y".
- Se intercambian las dos incógnitas (donde aparece "x" se pone "y" y viceversa).
- La expresión resultante es la de la función inversa de f.
Ejemplo: Función inversa
Halla la función inversa de la función definida por
:
Solución:
Como la función no es inyectiva, no podemos calcular su inversa. No obstante, podemos descomponerla en dos trozos que si sean funciones inyectivas por separado y a los que si podamos calcular su inversa:

En la siguiente escena puedes ver (en verde),
(en amarillo), y
(en turquesa):

En esta escena podrás introducir la expresión analítica de una función y obtener la expresión analítica de su inversa, así como ver sus respectivas representaciones gráficas. También se te propondrán algunas actividades.