Aproximaciones

De Wikipedia

Tabla de contenidos

Aproximaciones

  • Cuando un número tiene muchas cifras, es difícil recordarlo y operar con él. Por eso lo solemos sustituir por otro más manejable de valor similar, prescincindiendo de sus últimas cifras, que sustituimos por ceros. Ese otro número más sencillo decimos que es una aproximación del número de partida.

  • Cuando aproximamos un número, nos quedamos con sus primeras cifras y completamos con ceros. Esas cifras, con las que nos quedamos, se llaman cifras significativas
  • Se puede aproximar por defecto si el número utilizado es menor que el de partida, o por exceso si el número utilizado es mayor que el de partida.

Ejemplos:

   Número          Aproximación       Aproximación           Nº cifras 
 de partida        por defecto        por exceso           significativas
 ----------        ------------       ------------        ---------------
 2638251  ----->     260000    ----->    270000    ----->        2
 6035192  ----->    6000000    ----->   7000000    ----->        1

Redondeo

Para redondear un número a un determinado orden de unidades:

  1. Se sustituyen por ceros todas las cifras a la derecha de dicho orden
  2. Si la primera cifra sustituida es mayor o igual que cinco se suma una unidad a la cifra anterior

ejercicio

Ejemplo: Redondeo


Redondea a la centena los siguientes números:

a) 27640 b) 3850 c) 24572

Truncamiento

Para truncar un número a un determinado orden de unidades se sustituyen por ceros todas las cifras a la derecha de dicho orden.


ejercicio

Ejemplo: Truncamiento


Truncar a las centenas los números :

a) 27630 b) 3850

Errores

Cuando damos una cantidad de forma aproximada, cometemos un error. Distinguiremos los siguientes tipos de errores:

Error absoluto

El error absoluto es la diferencia entre el valor real y el aproximado, en valor absoluto, es decir, siempre con signo positivo.

Error \ Absoluto= |Valor \ real - Valor \ aproximado|


ejercicio

Ejemplo: Error absoluto


Una montaña mide 2475 m. Redondea la altura a las centenas y halla el error absoluto cometido:

Error relativo

El error relativo es el cociente entre el error absoluto y el valor exacto.

Error \ relativo= \cfrac {Error \ absoluto}{Valor \ real}


ejercicio

Ejemplo: Error relativo


Una montaña mide 2475 m. Trunca la altura a las centenas y halla el error relativo cometido:

ejercicio

Actividades Interactivas: Errores


1. Ejemplos sobre aproximaciones de fracciones y de los errores cometidos.
2. Ejercicios sobre aproximaciones de fracciones y de los errores cometidos.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda