Números racionales: Definición

De Wikipedia

Tabla de contenidos

Fracciones y números racionales

Los números enteros son útiles para contar u ordenar objetos, pero hay veces en las que es necesario dividir la unidad en partes iguales para poder expresar una medida: la mitad, la tercera parte, etc. Estas medidas se expresan por medio de fracciones.

  • Una fracción es una expresión de la forma \frac{a}{b}\;, o bien, a/b\;, donde a\; y b\; son números enteros, siendo b \ne 0 \;.
  • Al número a\; lo llamaremos numerador y al número b\;, denominador.



El valor de una fracción es el resultado de dividir numerador entre denominador. Según su valor, una fracción pueden ser:

  • Un número entero: Si el resultado de hacer la división es exacto.
  • Un número fraccionario: Si el resultado de hacer la división no es exacto.



El conjunto de los números racionales es el conjunto de todas las fracciones:

\mathbb{Q} = \lbrace \cfrac {a}{b}\; / \; a,b \in \mathbb{Z}, \, b \ne 0 \rbrace

Si el numerador es divisible por el denominador, la fracción representa a un número entero. Así, los racionales contienen a los enteros y éstos a los naturales.

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}

wolfram

Actividad: Números racionales


a) Representa el número 7/9 en forma de diagrama de tarta.
b) Representa el número 22/6 en forma de diagrama de tarta.
c) ¿Es -5 un número racional?

Fracciones propias e impropias

  • Fracciones propias son aquellas cuyo numerador es menor que el denominador. Son menores que 1.
  • Fracciones impropias son aquellas cuyo numerador es mayor o igual que el denominador. Son mayores que 1.

ejercicio

Actividades Interactivas: Fracciones propias e impropias


    Separa las fracciones propias de las impropias.

Fracción en forma mixta

Una fracción se dice que está en forma mixta si está expreada com suma de un entero y una fracción propia.

ejercicio

Proposición: Expresar una fración impropia en forma mixta


Toda fracción impropia se puede escribir en forma mixta:
\cfrac{D}{d}=c+\cfrac{r}{d}

donde c\;\! es el cociente y r\;\! es el resto de la división de D\;\! entre d\;\!.

ejercicio

Ejemplo: Expresar fracciones impropias en forma mixta


Expresa la frácción impropia \cfrac{35}{8}, en forma mixta.

Calculadora

Calculadora: Fracciones impropias


Para expresar una fracción impropia en forma mixta usaremos la tecla Fracción.

wolfram

Actividad: Expresar fracciones en forma de número mixto


a) Expresa en forma de número mixto: \cfrac{66}{8}.

Representación de fracciones en la recta numérica

ejercicio

Actividades Interactivas: Representación de fracciones en la recta numérica


    Haz en tu cuaderno la representación de las siguientes fracciones en la recta numérica:

\cfrac {3}{5}\, , \ \cfrac {7}{2}\, , \ -\cfrac {8}{3}\, , \ -\cfrac {4}{7}\, , \ \cfrac {1}{10}\, , \ \cfrac {14}{4}

wolfram

Actividad: Representación de fracciones en la recta numérica


a) Representa los números 15/6, -2/3, 8/7 y 22/6 en la recta numérica.

Fracciones equivalentes

Plantilla:Fracciones equivalentes

ejercicio

Actividades Interactivas: Fracciones equivalentes


Actividad 1: Busca una fracción equivalente a la dada.
Actividad 2: Comprueba si dos fracciones son equivalentes o no (Método de los productos cruzados).
Actividad 3: Junta las fracciones equivalentes.

Plantilla:Wolfran fracciones equivalentes

Simplificar fracciones. Fracciones irreducibles

  • Simplificar una fracción es sustituirla por otra equivalente con el numerador y denominador menores que los de partida.
  • Cuando una fracción no se puede simplificar se dice que es irreducible.

ejercicio

Procedimiento: Simplificación


  • Para simplificar fracciones se divide numerador y denominador por un mismo número, distinto de 0 y 1. Este proceso se puede repetir hasta hacer la fracción irreducible.
  • Si queremos hacer la fracción irreducible en un solo paso debemos dividir numerador y denominador por el m.c.d. de ambos.

La simplificación de fracciones me proporciona un método para saber si dos fracciones son equivalentes.

ejercicio

Procedimiento


Si al simplificar dos fracciones se obtiene la misma fracción irreducible, entonces las dos fracciones son equivalentes.

ejercicio

Actividades Interactivas: Simplificación de fracciones


Actividad 1: Simplifica las fracciones.
Actividad 2: Coloca junto a cada fracción su fracción irreducible.

wolfram

Actividad: Simplicar fracciones


a) Simplifica \cfrac{140}{26}.

Orden en el conjunto de los racionales

Una forma de comparar fracciones consistía en calcular su valor numérico, efectuando la división. A continuación vamos a ver otras formas distintas de hacerlo. Distinguiremos los siguientes casos:

Caso 1: Las fracciones tienen numeradores o denominadores iguales

En algunos casos es fácil comparar dos fracciones sin necesidad de hacer la división. Esto será posible si ambas fracciones tienen los numeradores o denominadores iguales.

ejercicio

Comparar fracciones con numeradores o denominadores iguales


  • De dos fracciones con el mismo denominador, es mayor la de mayor numerador.
  • De dos fracciones con el mismo numerador, es mayor la de menor denominador.

Caso 2: Las fracciones tienen numeradores y denominadores distintos

Veamos ahora un procedimiento para los casos en que no sean iguales ni los numeradores ni los denominadores. Lo que haremos será reducirlas a común denominador.

En la animación anterior, cuando los denominadores son distintos, no podemos comparar las piezas coloreadas de verde, pues son de tamaños distintos. Al cambiar los denominadores por 12, sí podemos hacer la comparación. Además, 12 no es un denominador cualquiera, es el mínimo común múltiplo de 3 y 4. Se podría usar cualquier otro múltiplo común, pero lo normal es usar el menor posible para no trabajar con números muy grandes.

ejercicio

Ordenar fracciones


  • Para ordenar fracciones con distinto denominador debemos primero reducirlas a común denominador.
  • Una vez reducidas a común denominador, será mayor la de mayor numerador.

ejercicio

Ejemplo: Ordenar fracciones


Ordena las siguientes fracciones: \cfrac{4}{6} \, , \ \cfrac{3}{4}  \, \ y \ \cfrac{1}{2}

Veamos un ejemplo:

ejercicio

Ejemplo: Ordenar fracciones


Ordena las fracciones:
\cfrac{3}{5}\ ,\quad \cfrac{2}{4}\ ,\quad\cfrac{7}{10}

ejercicio

Actividad Interactiva: Ordenar fracciones


Actividad 1: Ordena de menor a mayor estas fracciones.

wolfram

Actividad: Ordenar fracciones


a) Ordena de menor a mayor las fracciones: \cfrac {5}{12} \; , \ \cfrac{3}{6} \; , \ \cfrac{5}{8} \; , \ \cfrac{1}{3}

Ejercicios

ejercicio

Ejercicios: Fracciones equivalentes


1. Agrupa las fracciones que sean equivalentes:

\cfrac {15}{20} \quad \cfrac{3}{5}\quad \cfrac{8}{16}\quad\cfrac{3}{4}\quad \cfrac{15}{25}\quad \cfrac{1}{2}\quad \cfrac{21}{28}

2. Simplifica las fracciones:

a) \cfrac{70}{14} b) \cfrac{300}{420} c) \cfrac{105}{60}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda