Números naturales

De Wikipedia

Tabla de contenidos

Números naturales

El conjunto de los números naturales es:

\mathbb{N}=\left \lbrace 1 ,\ 2,\ 3, \cdots \right \rbrace

Se trata de un conjunto con infinitos elementos y sirven para:

  • Contar (números cardinales: 1, 2, 3, ...).
  • Ordenar (números ordinales: 1º, 2º, 3º, ...).
  • Identificar y diferenciar los distintos elementos de un conjunto.







Operaciones con naturales

Suma y multiplicación de naturales

La suma (o adición) y la multiplicación (o producto) de dos números naturales es otro número natural. Por eso se dice que estas dos operaciones son operaciones internas.

Resta y división de naturales

La resta (o substracción) y la división (o cociente) de dos números naturales no siempre es otro número natural.

Propiedades de la suma y el producto de naturales

La suma y la multiplicación cumplen las siguientes propiedades:

  • Propiedad asociativa:
(a+b)+c=a+(b+c)\,\!
(a \cdot b)\cdot c=a \cdot(b \cdot c)
  • Propiedad conmutativa:
a+b=b+a\,\!
a \cdot b=b \cdot a
  • Propiedad distributiva:
a \cdot (b+c)=a \cdot b+a \cdot c


Sacar factor común

La propiedad distributiva sirve para simplificar expresiones sacando factor común. Veamos un ejemplo

ejercicio

Ejemplo: Sacar factor común


Saca factor común en la expresión 16xyz-24xz+4x\;\!

División de naturales

Sean D\; y d\; dos números naturales, con d \ne 0.

  • La división o cociente de D\; entre d\; consiste en ver cuantas veces está contenido d\; en D\;.
    • Se representa por D : d=c\;.
    • A D\; lo llamaremos dividendo, a d\; divisor y al resultado de la división, c\;, cociente.

  • Vamos a distinguir dos casos:
    • Si d\; está contenido en D\; un número "exacto" de veces (el cociente, c\;, es un número natural tal que D=d \cdot c\;), diremos que la división es exacta.
    • En caso contrario diremos que la división es entera. Si ocurre esto, es posible encontrar un número natural r\;, menor que d\;, de manera que si dividimos D-r\; entre d\;, la división es exacta. A dicho número r\; lo llamaremos resto o residuo de la división.
20:4 = 5
Aumentar
20:4 = 5

ejercicio

Algoritmo de la división


Dados D\;\! y d\;\! , dos números naturales cualesquiera, existen dos únicos números naturales, c\;\! y r\;\! , tales que:

D=d \cdot c + r

D\;\! es el dividendo, d\;\! el divisor, c\;\! el cociente y r\;\! el resto.

Potenciación de naturales

Una potencia es un modo abreviado de escribir un producto de un número por sí mismo:

\begin{matrix}  a^b = \, \\ \; \end{matrix} \begin{matrix} \underbrace{ a \cdot a \cdots a } \\ b \, \mbox{veces} \end{matrix}         (Se lee: "a\; elevado a b\;")
  • El número a\; se llama base. Es el número que se multiplica por sí mismo.
  • El número b\; se llama exponente. Es el número que indica las veces que la base aparece como factor.
  • Por convenio, se establece que: a^0=1 \ ,\ \ \forall a \ne 0\;.
  • Cuando el exponente de una potencia es el número 1 no se pone exponente, basta con poner el número de la base.



Imagen:potenciass.gif

¡Ojo, no confundir!

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Propiedades de las potencias de naturales

ejercicio

Propiedades de las potencias


1. Producto de potencias de la misma base: a^m \cdot a^n=a^{n+m}

2. Cociente de potencias de la misma base: a^m : a^n=a^{m-n}\,\!

3. Potencia de un producto: a^n \cdot b^n=(a \cdot b)^n

4. Potencia de un cociente: a^n : b^n=(a : b)^n\,\!

5. Potencia de otra potencia: (a^m)^n=a^{m \cdot n}

Actividades

Jerarquía de las operaciones con naturales

A la hora de operar con números naturales seguiremos las siguientes pautas:

ejercicio

Jerarquía de las operaciones


A la hora de operar seguiremos las siguientes pautas:

  • Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
  • Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
  1. Las potencias y las raíces.
  2. Las multiplicaciones y las divisiones (de izquierda a derecha).
  3. Las sumas y las restas.



Ejercicios y problemas

Ejercicios

ejercicio

Ejercicios


1. Calcula:

a) 7+3\cdot5-2=
b) (7+3)\cdot5-2=
c) 7+3\cdot(5-2)=
d) (7+3)\cdot(5-2)=

2. Simplifica:

a) (x^2)^5\,\! b) x^3 \cdot x^4 \cdot x^2 c) (x^3)^2 \cdot (x^2)^4 \cdot x

3. Simplifica:

a) \cfrac{3^5}{3^2} b) \cfrac{5^4}{5^2} c) \cfrac{2^3 \cdot 5^4}{2 \cdot 5^2}

4. Extrae factor común:

a) -18a+20a-10a\,\! b) 15x-60x^2\,\! c) 5ba^2-3ab+2ba^3\;\!

Problemas

ejercicio

Problemas


1. Al dividir 453 entre 32 se obtiene 5 de resto. ¿Cúal es el divisor?
2. Una empresa compra una máquina de café por 6.000 €. Cada mes se gasta 100 € en mantenimiento pero obtiene 350 € por la venta de café. Al cabo de 2 años y medio la vende por 4920 €. ¿Qué beneficio mensual le ha aportado la máquina?

Calculadora

Suma, resta, multiplicación y división

Calculadora

Calculadora: Suma, resta, multiplicación y división


Para sumar, restar, multiplicar y dividir usaremos las teclas Suma, Resta, Multiplicación y División.

Paréntesis

Calculadora

Calculadora: Paréntesis


Para abrir y cerrar paréntesis usaremos las teclas Abre paréntesis yCierra paréntesis.

Potencias

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda