Números naturales: Operaciones
De Wikipedia
Menú:
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | Operaciones I Operaciones II Tablas de multiplicar Mi libreta | WIRIS Geogebra Calculadora Números naturales Aritmética |
Tabla de contenidos |
Operaciones con naturales
Suma y multiplicación de naturales
La suma (o adición) y la multiplicación (o producto) de dos números naturales es otro número natural. Por eso se dice que estas dos operaciones son leyes de composición interna.
Resta y división de naturales
La resta (o substracción)y la división (o cociente) de dos números naturales no siempre es otro número natural. Por eso se dice que estas dos operaciones son leyes de composición externa.
Propiedades de la suma y el producto de naturales
La suma y la multiplicación cumplen las siguientes propiedades:
- Propiedad asociativa:
- Propiedad conmutativa:
- Propiedad distributiva:
Problemas
Problemas: Operaciones con naturales
1. Una empresa compra una máquina de café por 6.000 €. Cada mes se gasta 100 € en mantenimiento pero obtiene 350 € por la venta de café. Al cabo de 2 años y medio la vende por 4920 €. ¿Qué beneficio mensual le ha aportado la máquina?
Solución: 214 € |
Menú:
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | Operaciones I Operaciones II Tablas de multiplicar Mi libreta | WIRIS Geogebra Calculadora Números naturales Aritmética |
Sacar factor común
La propiedad distributiva sirve para simplificar expresiones sacando factor común. Veamos un ejemplo
Ejemplo: Sacar factor común
- Saca factor común en la expresión
Solución:
El factor común, que se repite en los tres sumandos, es . Ese factor lo multiplicamos por un paréntesis que contenga a otros tres sumandos. Cada uno de los sumandos del paréntesis deberá ser tal, que al multiplicarlo por el factor común , dé como resultado cada uno de los sumandos de la expresión de partida. En nuestro caso:
Ejercicios
Ejercicios: Sacar factor común 1. Extrae factor común:
Solución: a) b) c) |