Distribuciones muestrales. Teorema central del límite

De Wikipedia

Distribución muestral de las proporciones

Vamos a obtener experimentalmente la distribución de las proporciones muestrales. Para ello consideremos el conjunto de figuras:

La proporción poblacional de triángulos es 1/4.

Consideremos todas las muestras de tamaño 2 posibles, mediante muestreo aleatorio simple (con reemplazamiento). Hallamos la distribución de probabilidad de la proporción muestral (nombrada por \widehat{p}):

Calculamos su esperanza matemática y la varianza:

E( \widehat{p})= 0. \frac{9} {16} + 0.5. \frac{6} {16} + 1. \frac{1} {16} = \frac{1} {4}= p


V( \widehat{p})= 0^2. \frac{9} {16} + 0.5^2. \frac{6} {16} + 1^2. \frac{1} {16} - ( \frac{1} {4})^2 = \frac{3} {32}= \frac{p.(1-p)} {n}

El número de éxitos x de una muestra de tamaño n, se distribuye de forma binomial B(n, p); si la aproximamos a una normal será N( n.p, \sqrt{n.p.(1-p)}). Como p = \frac{x} {n}, dividiendo x por n se tiene que:

\widehat{p} \rightarrow N \left ( p , \sqrt{ \frac{p.(1-p)} {n}}\right )

Si la población es finita y la extracción simultánea o sin reposición, la desviación típica va multiplicada por la siguiente expresión:

No se pudo entender (error de sintaxis): \sqrt{ \frac{N - n)} {N - 1}}}
}}

Donde N = tamaño de la población; n = tamaño de la muestra

Distribución muestral de las medias

Teorema central del límite

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda