Teorema de Pitágoras. Aplicaciones

De Wikipedia

Tabla de contenidos

Teorema de Pitágoras

ejercicio

Teorema de Pitágoras


En un triángulo rectángulo la hipotenusa al cuadrado es igual al cuadrado de la suma de los catetos


a^2+b^2=c^2\;\!


donde a\;\! y b\;\! son los catetos y c\;\! la hipotenusa.


Este teorema se debe a Pitágoras de Samos (aprox. 582 a.C.- 507 a.C.)

Demostración geométrica animada

ejercicio

Actividad Interactiva: Teorema de Pitágoras


Actividad 1: Dado el triángulo de lados b=3, c=4 y a=5, comprueba el teorema de Pitágoras mediante el procedimiento gráfico de los cuadrados construidos sobre los lados del triángulo.

ejercicio

Video: Pitágoras: mucho más que un teorema (25´)


ejercicio

Web: Teorema de Pitágoras


Ternas pitagóricas

Se llaman ternas pitagóricas a las ternas de números naturales que verifican el teorema de Pitágoras, por ejemplo 3,4,5. También son ternas pitagóricas sus múltiplos: 6,8,10; 9,12,15 ...

ejercicio

Actividades Interactivas: Ternas pitagóricas


1. Comprueba las siguientes ternas pitagóricas.

Aplicaciones del teorema de Pitágoras

ejercicio

Actividades Interactivas: Aplicaciones del teorema de Pitágoras


Actividad 1: Conocidos los catetos: a=4 cm. y b=5 cm., calcular la hipotenusa, c.
Actividad 2: Conocido un cateto a=5 cm. y la hipotenusa c=8 cm., calcular el otro cateto, b.
Actividad 3: El tamaño de las pantallas de televisión viene dado por la longitud en pulgadas de la diagonal de la pantalla (una pulgada equivale a 2,54 cm). Si un televisor mide 34,5 cm de base y 30 cm de altura, ¿cuál será su tamaño?
Actividad 4: Halla la altura de un triángulo equilatero de 4 cm. de lado.
Actividad 5: Halla la altura de un triángulo isósceles cuyos lados miden c=5 cm. y a=b=4 cm.
Actividad 6: Calcular el área de un cuadrado inscrito en una circunferencia de 3 cm de radio.

Clasificar un triángulo atendiendo a sus ángulos conocidos sus lados

En un triángulo cualquiera, si llamamos a al lado mayor, y a los otros dos b y c, se cumple que:

  • Si a2 > b2 + c2, el triángulo es obtusángulo
  • Si a2 = b2 + c2, el triángulo es rectángulo
  • Si a2 < b2 + c2, el triángulo es acutángulo

ejercicio

Actividad Interactiva: Clasificar un triángulo conocidos sus lados


1. Clasifica los siguientes triángulos, atendiendo a sus ángulos:

a) Triángulo de lados 4, 5 y 2.
b) Triángulo de lados 5, 3 y 4.
c) Triángulo de lados 5, 3 y 3.

Herramientas personales
AVISO: Si los applets de Java no te funcionan prueba a bajar a "Media" el nivel de seguridad en: Panel de Control > Java > Seguridad > Nivel de Seguridad
COMPARTE ESTA WEB: