Teorema de Pitágoras. Aplicaciones

De Wikipedia

Tabla de contenidos

Teorema de Pitágoras

ejercicio

Teorema de Pitágoras


En un triángulo rectángulo la hipotenusa al cuadrado es igual al cuadrado de la suma de los catetos


a^2+b^2=c^2\;\!


donde a\;\! y b\;\! son los catetos y c\;\! la hipotenusa.


Este teorema se debe a Pitágoras de Samos (aprox. 582 a.C.- 507 a.C.)

Demostración geométrica animada

Aplicaciones del teorema de Pitágoras

Cálculo del lado desconocido en un triángulo rectángulo

ejercicio

Procedimiento


A partir de la fórmula del teorema de Pitágoras:

a^2+b^2=c^2\;\!

podemos despejar cualquiera de los lados:

c=\sqrt{a^2+b^2} \qquad a=\sqrt{c^2-b^2} \qquad b=\sqrt{c^2-a^2}

Cálculo de la distancia entre dos puntos

Conocidas las coordenadas de dos puntos del plano, el teorema de Pitágoras nos permite calcular la distancia entre ambos:

ejercicio

Proposición


La distancia entre dos puntos P(x_1,y_1)\, y Q(x_2,y_2)\, es igual a:

d(PQ)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Clasificación de un triángulo atendiendo a sus ángulos conocidos sus lados

En un triángulo cualquiera, si llamamos a al lado mayor, y a los otros dos b y c, se cumple que:

  • Si a2 > b2 + c2, el triángulo es obtusángulo
  • Si a2 = b2 + c2, el triángulo es rectángulo
  • Si a2 < b2 + c2, el triángulo es acutángulo

Ternas pitagóricas

  • Se llaman ternas pitagóricas a las ternas de números naturales que verifican el teorema de Pitágoras.
  • Las ternas cuyos tres números son primos entre sí (m.c.d(a,b,c)=1) reciben el nombre de ternas pitagóricas primitivas.

Generando ternas pitagóricas

ejercicio

Proposición


Si (a,b,c)\; es una terna pitagórica entonces también lo es (ka,kb,kc)\;, con k \in \mathbb{N}.

ejercicio

Proposición


  • \{ (a,b,c) \ / \ a=k^2+1 \, ; \ b=2k\, ; \ c=k^2-1  \, , \ k \in \mathbb{N} \} son ternas pitagóricas.
  • \{ (a,b,c)  \ / \ a=p^2-q^2 \, ; \ b=2pq \, ; \ c=p^2+q^2 \,, \ p>q \} son ternas pitagóricas.

ejercicio

Proposición


Si x_{n-1}, \, x_n, \, x_{n+1}, \, x_{n+2} \; son cuatro términos cualesquiera de la sucesión de Fibonacci, entonces los siguientes números

a_1 = x_{n-1} x_{n+2}\, ; \ \ a_2= 2x_n x_{n+1}\, ; \ \ a_3=\sqrt{a_1^2 +a_2^2}

forman una terna pitagórica.

Herramientas personales
* AVISO: Si los applets de Java no te funcionan debes usar Firefox, instalar Java e incluir http://maralboran.org en la lista de excepciones del panel de Java ubicado en: Panel de Control > Java > Seguridad > Editar lista de sitios