Triángulos rectángulos (PACS)

De Wikipedia

Tabla de contenidos

Triángulo rectángulo

Triángulo rectángulo se denomina al triángulo en el que uno de sus ángulos es recto, es decir, mide 90º (grados sexagesimales) o π/2 radianes.

Se denomina hipotenusa al lado mayor del triángulo, el lado opuesto al ángulo recto.

Se llaman catetos a los dos lados menores, los que conforman el ángulo recto.

Teorema de Pitágoras

ejercicio

Teorema de Pitágoras


En un triángulo rectángulo la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos:


a^2+b^2=c^2\;\!


donde a\;\! y b\;\! son los catetos y c\;\! la hipotenusa.


Este teorema se debe a Pitágoras de Samos (aprox. 582 a.C.- 507 a.C.)

Demostración geométrica animada

Aplicaciones del teorema de Pitágoras

ejercicio

Actividades Interactivas: Aplicaciones del teorema de Pitágoras


Actividad 1: Conocidos los catetos: a=4 cm. y b=5 cm., calcular la hipotenusa, c.
Actividad 2: Conocido un cateto a=5 cm. y la hipotenusa c=8 cm., calcular el otro cateto, b.
Actividad 3: El tamaño de las pantallas de televisión viene dado por la longitud en pulgadas de la diagonal de la pantalla (una pulgada equivale a 2,54 cm). Si un televisor mide 34,5 cm de base y 30 cm de altura, ¿cuál será su tamaño?
Actividad 4: Halla la altura de un triángulo equilatero de 4 cm. de lado.
Actividad 5: Halla la altura de un triángulo isósceles cuyos lados miden c=5 cm. y a=b=4 cm.
Actividad 6: Calcular el área de un cuadrado inscrito en una circunferencia de 3 cm de radio.

Resolución de triangulos rectángulos

Cuando decimos resolver un triángulo nos referimos a que encontramos todas sus magnitudes desconocidas, es decir la longitud de sus tres lados y la medida de sus tres ángulos, a partir de las conocidas.

Si un triángulo es rectángulo en realidad ya sabemos una cosa, que tiene un ángulo de 90º, así que nos hará falta menos información para resolverlo. Podemos resolver un tirángulo rectángulo si conocemos:

  • Dos lados
    • Podemos calcular el tercer lado con el Teorema de Pitágoras a^2+b^2=c^2\,\!
    • Cuando sabemos lo que miden los tres lados es fácil encontrar los ángulos a partir de las razones trigonométricas y de la relación entre los ángulos de un triángulo.

Ejemplo

Tenemos este triángulo y sabemos que a= 14 \ \mbox{ y } \ c = 23\,\!

b=\sqrt{23^2-14^2}=18,25

\sin \hat A = \frac{14}{23}=0,6087 \rightarrow \hat A=37,5^\circ

\hat B = 180 - 90 - \hat A=180-90-37,5 = 52,5^\circ\,\!


  • Un ángulo y un lado
    • Los lados se calculan mediante la razón trigonométrica del ángulo que tenemos y con la longitud del lado que tenemos
    • El ángulo que nos falta se calcula recordando que los ángulos de un triángulo suman entre los tres 180º siempre.

Ejemplo Tenemos este triángulo y conocemos a=29 \ \mbox{ y } \ \hat B=63^o\,\!

\tan \hat B = \frac{a}{b} \rightarrow b=a \tan \hat B=29 \tan 63=56,92\,\!

c=\sqrt{a^2+b^2}=\sqrt{29^2+56,92^2}=63,88

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda