Plantilla:Sucesivas ampliaciones de los conjuntos numericos

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:29 24 nov 2017
Coordinador (Discusión | contribuciones)
(Números enteros)
← Ir a diferencia anterior
Revisión de 10:31 24 nov 2017
Coordinador (Discusión | contribuciones)
(Números naturales)
Ir a siguiente diferencia →
Línea 8: Línea 8:
|sinopsis=Toda abstracción es en sí misma una fuente de contradicciones: su depuración es larga y difícil, pues las ideas siempre tardan en madurar. |sinopsis=Toda abstracción es en sí misma una fuente de contradicciones: su depuración es larga y difícil, pues las ideas siempre tardan en madurar.
|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/01-funciones-reales-de-una-variable-real-2/04-la-facultad-de-abstraccion-historia-del-cero-6#.VCVYPhZ8HA8 |url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/01-funciones-reales-de-una-variable-real-2/04-la-facultad-de-abstraccion-historia-del-cero-6#.VCVYPhZ8HA8
-}} 
-{{p}} 
-{{Video_enlace_fonemato 
-|titulo1=Prohibido dividir por cero 
-|duracion=5'58" 
-|sinopsis=Todo cociente de números cuyo denominador sea 0 carece de sentido matemático. 
-De otro modo: si se admite la división por "cero" es el caos, pues entonces 2 = 1. Por eso,si divides por cero, aunque sea sin darte cuenta, serás fusilado de inmediato y expulsado de la comunidad científica por los siglos de los siglos. 
-|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/01-funciones-reales-de-una-variable-real-2/05-prohibido-dividir-por-cero-4#.VCVbhhZ8HA8 
}} }}
{{p}} {{p}}

Revisión de 10:31 24 nov 2017

Recordemos las sucesivas ampliaciones de los conjuntos númericos que se han estudiado en cursos anteriores:

Tabla de contenidos

Números naturales

El conjunto de los números naturales es:

\mathbb{N}=\left \lbrace 1 ,\ 2,\ 3, \cdots \right \rbrace

Se trata de un conjunto con infinitos elementos y sirven para:

  • Contar (números cardinales: 1, 2, 3, ...).
  • Ordenar (números ordinales: 1º, 2º, 3º, ...).
  • Identificar y diferenciar los distintos elementos de un conjunto.







Este conjunto es insuficiente si queremos dar solución a ecuaciones como:

x+3=1\;

Se precisa de un conjunto más amplio que incluya a los números negativos, el conjunto de los números enteros.


Para más información: Números naturales

Números enteros

Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor hay que restarle uno mayor. Nos vemos obligados a ampliar el concepto de números naturales, introduciendo un nuevo conjunto numérico llamado números enteros.

El conjunto de los números enteros

\mathbb{Z}=\left \lbrace -3, -2,-1,\ 0,\ 1 ,\ 2,\ 3, \cdots \right \rbrace

Está formado por:

  • El conjunto de los números naturales o enteros positivos : \mathbb{Z}^+=\mathbb{N}=\left \lbrace 1 ,\ 2,\ 3, \cdots \right \rbrace.
  • Sus opuestos, los enteros negativos: \mathbb{Z}^-=\left \lbrace \cdots, -1 ,\ -2,\ -3, \cdots \right \rbrace.
  • El cero (0).

Como consecuencia, \mathbb{N} \subset \mathbb{Z}, que se lee: "el conjunto de los números naturales está incluido en el conjunto de los números enteros".

Este conjunto también se nos queda chico. Por ejemplo, la ecuación

3x=2\;

no tiene solución en el conjunto de los números enteros ya que requiere números fraccionarios. Es necesaria la ampliación al conjunto de los números racionales.


Para más información: Números enteros

Números racionales

El conjunto de los números racionales es el conjunto de todas las fracciones:

\mathbb{Q} = \lbrace \cfrac {a}{b}\; / \; a,b \in \mathbb{Z}, \, b \ne 0 \rbrace

Estos números, o bien son enteros, o bien se pueden expresar mediante decimales exactos o periódicos.

Pero, ¿qué ocurre si queremos resolver la siguiente ecuación?:

x^2=2\;

La respuesta la tienes en el siguiente resultado:

ejercicio

Proposición


No existe ningún número racional que elevado al cuadrado dé como resultado 2. Es decir, el número\sqrt{2} \, no es racional.



De forma más general:

ejercicio

Proposición


Si p\; es un número primo, entonces el número\sqrt{p} \, no es racional.

ejercicio

Propiedades


  • La suma de un racional y un irracional es otro irracional
  • El producto de un racional por un irracional es otro irracional.
  • Existe al menos un irracional entre cualesquiera dos racionales.

Surge, por tanto, la necesidad de ampliar el conjunto de los números racionales, añadiendole estos nuevos números que llamaremos números irracionales.

Números irracionales

El conjunto de los números irracionales es el formado por aquellos números que no se pueden expresar mediante fracciones y, por tanto, cuya expresión decimal tiene infinitas cifras no periódicas. Lo representaremos con la letra \mathbb{I}.



Los números irracionales más famosos son los siguientes:

El número áureo, Phi:



El número Pi:

El número e:

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda