Teorema de Pitágoras. Aplicaciones

De Wikipedia

(Diferencia entre revisiones)
Revisión de 19:06 26 nov 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 1: Línea 1:
-{{Menú Matemáticas 3ESO+{{Menú Matemáticas Contenidos Generales
|ir= |ir=
|ampliar= |ampliar=
Línea 5: Línea 5:
|enlaces= |enlaces=
}} }}
 +{{p}}
{{p}} {{p}}
==Teorema de Pitágoras== ==Teorema de Pitágoras==
Línea 14: Línea 15:
{{p}} {{p}}
===Cálculo de la distancia entre dos puntos=== ===Cálculo de la distancia entre dos puntos===
-Conocidas las coordenadas de dos puntos del plano, el teorema de Pitágoras nos permite calcular la distancia entre ambos:+{{Cálculo de la distancia entre dos puntos}}
{{p}} {{p}}
-{{Geogebra: distancia entre dos puntos}} 
-{{p}} 
- 
==Clasificación de un triángulo atendiendo a sus ángulos conocidos sus lados== ==Clasificación de un triángulo atendiendo a sus ángulos conocidos sus lados==
{{Clasificar un triángulo atendiendo a sus ángulos conocidos sus lados}} {{Clasificar un triángulo atendiendo a sus ángulos conocidos sus lados}}
Línea 24: Línea 22:
==Ternas pitagóricas== ==Ternas pitagóricas==
{{Ternas pitagóricas}} {{Ternas pitagóricas}}
 +{{p}}
 +==Ejercicios y problemas==
 +{{Cálculo de medidas con el teorema de Pitágoras}}
{{p}} {{p}}
[[Categoría: Matemáticas|Pitágoras]][[Categoría: Geometría|Pitágoras]] [[Categoría: Matemáticas|Pitágoras]][[Categoría: Geometría|Pitágoras]]

Revisión actual

Tabla de contenidos

Teorema de Pitágoras

ejercicio

Teorema de Pitágoras


En un triángulo rectángulo la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos:


a^2+b^2=c^2\;\!


donde a\;\! y b\;\! son los catetos y c\;\! la hipotenusa.


Este teorema se debe a Pitágoras de Samos (aprox. 582 a.C.- 507 a.C.)

Demostración geométrica animada

Aplicaciones del teorema de Pitágoras

Cálculo del lado desconocido en un triángulo rectángulo

ejercicio

Procedimiento


A partir de la fórmula del teorema de Pitágoras:

a^2+b^2=c^2\;\!

podemos despejar cualquiera de los lados:

c=\sqrt{a^2+b^2} \qquad a=\sqrt{c^2-b^2} \qquad b=\sqrt{c^2-a^2}

Cálculo de la distancia entre dos puntos

Conocidas las coordenadas de dos puntos del plano, el teorema de Pitágoras nos permite calcular la distancia entre ambos:

ejercicio

Proposición


La distancia entre dos puntos P(x_1,y_1)\, y Q(x_2,y_2)\, es igual a:

d(PQ)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Clasificación de un triángulo atendiendo a sus ángulos conocidos sus lados

En un triángulo cualquiera, si llamamos a al lado mayor, y a los otros dos b y c, se cumple que:

  • Si a2 > b2 + c2, el triángulo es obtusángulo
  • Si a2 = b2 + c2, el triángulo es rectángulo
  • Si a2 < b2 + c2, el triángulo es acutángulo

Ternas pitagóricas

  • Se llaman ternas pitagóricas a las ternas de números naturales que verifican el teorema de Pitágoras.
  • Las ternas cuyos tres números son primos entre sí, es decir, tales que m.c.d(a,b,c)=1, reciben el nombre de ternas pitagóricas primitivas.

Generando ternas pitagóricas

ejercicio

Proposición


Si (a,b,c)\; es una terna pitagórica entonces también lo es (ka,kb,kc)\;, con k \in \mathbb{N}.

ejercicio

Proposición


  • \{ (a,b,c) \ / \ a=k^2+1 \, ; \ b=2k\, ; \ c=k^2-1  \, , \ k \in \mathbb{N} \} son ternas pitagóricas.
  • \{ (a,b,c)  \ / \ a=p^2-q^2 \, ; \ b=2pq \, ; \ c=p^2+q^2 \,, \ p>q \} son ternas pitagóricas.

ejercicio

Proposición


Si x_{n-1}, \, x_n, \, x_{n+1}, \, x_{n+2} \; son cuatro términos cualesquiera de la sucesión de Fibonacci, entonces los siguientes números

a_1 = x_{n-1} x_{n+2}\, ; \ \ a_2= 2x_n x_{n+1}\, ; \ \ a_3=\sqrt{a_1^2 +a_2^2}

forman una terna pitagórica.

Ejercicios y problemas


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda