Teorema de Pitágoras. Aplicaciones
De Wikipedia
Tabla de contenidos[esconder] |
Teorema de Pitágoras
Teorema de Pitágoras
En un triángulo rectángulo la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos:
| ![]() |
Ternas pitagóricas
- Se llaman ternas pitagóricas a las ternas de números naturales que verifican el teorema de Pitágoras.
- Las ternas cuyos tres números son primos entre sí, es decir, tales que m.c.d(a,b,c)=1, reciben el nombre de ternas pitagóricas primitivas.
Generando ternas pitagóricas
Proposición
Si son cuatro términos cualesquiera de la sucesión de Fibonacci, entonces los siguientes números

forman una terna pitagórica.
Aplicaciones del teorema de Pitágoras
Actividades Interactivas: Aplicaciones del teorema de Pitágoras
Actividad 1: Conocidos los catetos: a=4 cm. y b=5 cm., calcular la hipotenusa, c.
Actividad 2: Conocido un cateto a=5 cm. y la hipotenusa c=8 cm., calcular el otro cateto, b.
Actividad 3: El tamaño de las pantallas de televisión viene dado por la longitud en pulgadas de la diagonal de la pantalla (una pulgada equivale a 2,54 cm). Si un televisor mide 34,5 cm de base y 30 cm de altura, ¿cuál será su tamaño?
Actividad 4: Halla la altura de un triángulo equilatero de 4 cm. de lado.
Actividad 5: Halla la altura de un triángulo isósceles cuyos lados miden c=5 cm. y a=b=4 cm.
Actividad 6: Calcular el área de un cuadrado inscrito en una circunferencia de 3 cm de radio.
|
Clasificar un triángulo atendiendo a sus ángulos, conocidos sus lados
En un triángulo cualquiera, si llamamos a al lado mayor, y a los otros dos b y c, se cumple que:
- Si a2 > b2 + c2, el triángulo es obtusángulo
- Si a2 = b2 + c2, el triángulo es rectángulo
- Si a2 < b2 + c2, el triángulo es acutángulo
Actividad Interactiva: Clasificar un triángulo conocidos sus lados
1. Clasifica los siguientes triángulos, atendiendo a sus ángulos:
|