Teorema de Pitágoras. Aplicaciones
De Wikipedia
Tabla de contenidos[esconder] |
Teorema de Pitágoras
Teorema de Pitágoras
En un triángulo rectángulo la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos:
| ![]() |
Aplicaciones del teorema de Pitágoras
Cálculo del lado desconocido en un triángulo rectángulo
Procedimiento
A partir de la fórmula del teorema de Pitágoras:

podemos despejar cualquiera de los lados:

Cálculo de la distancia entre dos puntos
Conocidas las coordenadas de dos puntos del plano, el teorema de Pitágoras nos permite calcular la distancia entre ambos:
Clasificación de un triángulo atendiendo a sus ángulos conocidos sus lados
En un triángulo cualquiera, si llamamos a al lado mayor, y a los otros dos b y c, se cumple que:
- Si a2 > b2 + c2, el triángulo es obtusángulo
- Si a2 = b2 + c2, el triángulo es rectángulo
- Si a2 < b2 + c2, el triángulo es acutángulo
Ternas pitagóricas
- Se llaman ternas pitagóricas a las ternas de números naturales que verifican el teorema de Pitágoras.
- Las ternas cuyos tres números son primos entre sí, es decir, tales que m.c.d(a,b,c)=1, reciben el nombre de ternas pitagóricas primitivas.
Generando ternas pitagóricas
Proposición
Si son cuatro términos cualesquiera de la sucesión de Fibonacci, entonces los siguientes números

forman una terna pitagórica.