Sistemas de ecuaciones lineales (3ºESO Académicas)
De Wikipedia
← Revisión anterior | Revisión siguiente →
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Introducción
Los siguientes videotutoriales resumen gran parte de los conceptos que vamos a ver en esta página:
Tutorial en el que se dan los conceptos básicos respecto a las ecuaciones y sistemas de ecuaciones.
- 00:00 a 01:40: Definición de expresión algebraica.
- 01:40 a 04:00: Definición y ejemplos de ecuaciones.
- 04:00 a 08:32: Definición y ejemplo de solución de una ecuación.
- 08:32 a 10:02: Definición de tipos de igualdades según sus soluciones.
- 10:02 a 10:48: Definición y ejemplos de sistemas de ecuaciones.
- 10:48 a 14:20: Definición y ejemplo de solución de un sistema de ecuaciones.
- 14:20 a Fin: Definición de tipos de sistema de ecuaciones según sus soluciones.
- Definición de sistema de dos ecuaciones lineales con dos incógnitas.
- Sistemas equivalentes.
- Clasificación de los sistemas atendiendo al número de soluciones.
Videotutorial
(Pág. 125)
Sistemas de ecuaciones lineales 2x2
- Un sistema de dos ecuaciones de primer grado con dos incógnitas o simplemente, sistema 2x2 de ecuaciones lineales, es la agrupación de dos ecuaciones de primer grado con dos incógnitas:
- Se llama solución de un sistema 2x2, a cualquier pareja de valores que sea solución de ambas ecuaciones a la vez. Las soluciones de este tipo de sistemas son los puntos de corte de las rectas que representan cada una de las ecuaciones del sistema.
Ejemplo: Solución de un sistema de ecuaciones
Comprueba si las parejas de números (1,2) y (-1,3) son o no soluciones del sistema:
- Para comprobar si (1,2) es solución, sustituimos x=1 e y=2 en las dos ecuaciones del sistema:
Como no se verifican las dos ecuaciones, la pareja (1,2) no es solución del sistema.
- Para comprobar si (-1,3) es solución, sustituimos x=-1 e y=3 en las dos ecuaciones del sistema:
Ejercicios de autoevaluación sobre sistemas de ecuaciones lineales.
Comprueba soluciones de sistemas de ecuaciones lineales.
Ejercicios propuestos
Ejercicios propuestos: Sistemas de ecuaciones lineales |
Método grafico de resolución de sistemas de ecuaciones lineales 2x2
Procedimiento
Para resolver un sistema de ecuaciones lineales, representaremos gráficamente las rectas de las soluciones de cada una de las ecuaciones:
- Si las rectas se cortan, el punto de corte será la única solución del sistema.
- Si las rectas son paralelas, el sistema no tendrá solución.
- Si las rectas son coincidentes, el sistema tendrá infinitas soluciones.
Resolución de sistemas por el método grafico. Ejemplos.
Tutorial en el que se muestra la resolución de sistemas de ecuaciones lineales (grado 1) de dos variables por el método gráfico.
- 00:00 a 01:50: Definiciones iniciales.
- 01:50 a 15:10: Explicación del método gráfico. Ejemplo 1.
- 15:10 a 18:40: Ejemplo 2.
- 18:40 a 22:30: Explicación de los distintos tipos de sistema en función a sus soluciones. Ejemplos 3-4-5.
- 22:30 a Fin: Utilización de la aplicación online DESMOS para la resolución de sistemas de ecuaciones.
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
Resuelve gráficamente:
1) Resuelve gráficamente:
2) Dada la gráfica (ver video), obtén la solución aproximada del sistema.
3) Resuelve gráficamente:
- Actividad en la que aprenderás a resolver gráficamente un sistema de ecuaciones lineales con dos incógnitas.
- Actividad en la que deberás comprobar si una pareja de números son o no solución de un sistema.
Escena en la que podrás representar graficamente un sistema lineal 2x2 y resolverlo gráficamente.
Resolución de sistemas de ecuaciones por medio de gráficas.
Actividad: Método grafico de resolución de sistemas lineales 2x2 Resuelve los siguientes sistemas por el método gráfico:
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Ejercicios propuestos
Ejercicios propuestos: Sistemas de ecuaciones lineales |
Sistemas equivalentes
Dos sistemas son equivalentes cuando tienen las mismas soluciones.
Al igual que hicimos con las ecuaciones, para resolver sistemas, obtendremos otros equivalentes más sencillos de resolver que el de partida. Para ello utilizaremos las siguientes técnicas.
Transformaciones que mantienen la equivalencia de los sistemas
- Si se suma o resta a ambos miembros de una ecuación de un sistema una misma expresión, el sistema resultante es equivalente.
- Si se multiplican o se dividen ambos miembros de un sistema por un número distinto de cero el sistema resultante es equivalente.
- Si se suma o resta a una ecuación del sistema otra ecuación del sistema el sistema resultante es equivalente.
- Los dos primeros apartados ya los conocíamos del tema de ecuaciones, ya que son las transformaciones que permiten obtener ecuaciones equivalentes a una dada.
- Los apartados 2 y 3 se puede combinar, esto es, si a una ecuación de un sistema le sumamos o restamos otra ecuación multiplicada o dividida por un número distinto de cero, el sistema obtenido es equivalente.
¿Por qué podemos restar una ecuación de la otra en un sistema de ecuaciones?
Dado el sistema:
determina cuáles de los siguientes sistemas son equivalentes al anterior:
- a)
- b)
Dado el sistema:
determina cuáles de los siguientes sistemas son equivalentes al anterior:
- a)
- b)
En esta escena podrás realizar la siguiente actividad en la que se comprueba como ciertas transformaciones hechas a un sistema dan lugar a otro sistema equivalente.
Partirás del sistema:
y deberás contestar a las siguientes preguntas:
- Este sistema está representado en la escena. ¿Cuál es su solución?
- Divide la segunda ecuación por 3, dejando la segunda ecuación igual. Representa el nuevo sistema. ¿Qué solución tiene el nuevo sistema?. ¿Es equivalente al sistema de partida?
- En el sistema obtenido en el apartado 2, suma la 2ª ecuación a la 1ª y representa el sistema formado por esa nueva ecuación y una cualquiera de las dos ecuaciones del sistema de partida (por ejemplo la segunda). ¿Qué solución tiene?. ¿Es equivalente al sistema de partida?
- En el sistema obtenido en el apartado 3, divide la primera ecuación (la que no tiene "y") por 3 y deja la segunda ecuación igual. ¿Qué solución tiene?. ¿Es equivalente al sistema de partida?
Podrás hacer uso de la escena para representar las ecuaciones de los sistemas que van a apareciendo en cada apartado.
Sistemas de ecuaciones equivalentes.
Ejercicios propuestos
Ejercicios propuestos: Sistemas equivalentes |
Número de soluciones de un sistema
Discutir un sistema consiste en decir si el sistema tiene o no tiene solución, y caso de tener, si hay un número finito o infinito de soluciones.
- Un sistema es compatible si tiene solución e incompatible si no la tiene.
- Un sistema es determinado si tiene un número finito de soluciones e indeterminado si tiene infinitas soluciones.
Al discutir un sistema usaremos las siguientes siglas para abreviar:
- S.C.D. : Sistema Compatible Determinado (un número finito de soluciones)
- S.C.I. : Sistema Compatible Indeterminado (infinitas soluciones)
- S.I. : Sistema Incompatible (sin solución)
Discusión de sistemas lineales 2x2
Un sistema 2x2 de ecuaciones lineales puede ser:
- Compatible determinado (S.C.D.): 1 solución
- Compatible indeterminado (S.C.I.): Infinitas soluciones.
- Incompatible (S.I): 0 soluciones.
En efecto, razonando a partir de sus representaciones gráficas:
- Si las dos rectas se cortan en un punto: 1 solución (S.C.D.)
- Si las dos rectas son coincidentes: Infinitas soluciones (S.C.I.)
- Si las rectas son paralelas: 0 soluciones (S.I.)
Averigua si el siguiente sistema es compatible (consistente) o incompatible (inconsistente):
Averigua si el siguiente sistema es compatible determinado o compatible indeterminado:
A partir de la gráfica del video identifica sistemas con o sin solución.
Determina el número de soluciones del siguiente sistema:
Determina el número de soluciones de los siguientes sistemas:
- a)
- b)
- c)
- d)
- e)
¿Cuántas soluciones tiene un sistema si tiene al menos dos?
Actividades en las que aprenderás a determinar el número de soluciones de un sistema de ecuaciones lineales con dos incógnitas y a interpretarlo gráficamente.
Actividades en las que aprenderás a determinar el número de soluciones de un sistema de ecuaciones lineales con dos incógnitas y a interpretarlo gráficamente.
En esta escena podrás interactuar para ver la representación gráfica de los distintos tipos de sistemas según el número de soluciones y contestar a algunas preguntas.
En esta escena podrás ver 3 ejemplos con los distintos tipos de sistemas según el número de soluciones y contestar a una serie preguntas en relación a ellos.
Número de soluciones de un sistema de ecuaciones: método gráfico.
Ejercicios de autoevaluación sobre los tipos de sistemas lineales dependiendo del número de soluciones.
Ejercicios propuestos
Ejercicios propuestos: Número de soluciones de un sistema |