Números racionales
De Wikipedia
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | Fracciones I Fracciones II Fracciones III Números decimales | WIRIS Geogebra Calculadora Fracciones |
Números racionales
Los números enteros son útiles para contar u ordenar objetos, pero hay veces en las que es necesario dividir la unidad en partes iguales para poder expresar una medida: la mitad, la tercera parte, etc. Estas medidas se expresan por medio de fracciones.
- Una fracción es una expresión de la forma , o bien, , donde y son números enteros, siendo .
- Al número lo llamaremos numerador y al número , denominador.
Una fracción se puede interpretar como una cantidad determinada de porciones que se toman de un todo dividido en partes iguales:
- El denominador sirve para representar las partes en que se divide la unidad.
- El numerador sirve para representar las porciones que tomamos.
El valor de una fracción es el resultado de dividir numerador entre denominador. Según su valor, una fracción pueden ser:
- Un número entero: Si el resultado de hacer la división es exacto.
- Un número fraccionario: Si el resultado de hacer la división no es exacto.
Esta definición nos da otra forma de interpretar a una fracción, ya que nos permite verla como una "división indicada" en las que el dividendo es el numerador y el cociente el denominador.
Tutorial que explica el concepto de fracción y su representación gráfica, en partes de la unidad y en la recta numérica.
- 00:00 a 04:14: Conceptos básicos. Ejemplos introductorios.
- 04:14 a 05:38: Definición matemática de fracción.
- 05:38 a 09:45: Representación de fracciones como partes de la unidad (Ejemplos).
- 09:45 a 19:26: Representación de fracciones en la recta numérica (Ejemplos).
- 11:25 a 13:45: Aplicación del Teorema de Tales para la división de segmentos en partes iguales.
- Definición de fracción.
- Fracciones equivalentes.
- Simplificación de fracciones. Fracciones irreducibles.
Clasificación de las fracciones:
- Fracciones propias e impropias.
- Fracciones ordinarias y decimales.
- Fracciones homogeneas y heterogeneas.
- Fracciones irreducibles y reducibles.
El conjunto de los números racionales es el conjunto de todas las fracciones:
Actividad: Números racionales
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Fracciones propias e impropias
¿Qué pasa si el numerador es mayor que el denominador? ¿Cómo se interpreta el hecho de tomar más partes de la unidad de las que que hay?
Vamos a dar respuesta a estas preguntas a continuación, pero primero necesitamos ver los conceptos de fracción propia e impropia.
- Fracciones propias son aquellas cuyo numerador (en valor absoluto) es menor que el denominador (en valor absoluto). Su valor absoluto es menor que 1.
- Fracciones impropias son aquellas que no son propias. Su valor absoluto es mayor que 1.
Representación gráfica de fracciones propias e impropias.
Actividad en la que debes separar las fracciones propias de las impropias
Actividad: Números racionales
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Forma mixta de una fracción
Las fracciones impropias representan algo mayor que el todo, es decir, cuando trabajamos con una fracción impropia damos a entender que tenemos unidades completas de algo y, posiblemente, alguna unidad incompleta.
Esto queda de manifiesto en la proposición y en los ejemplos que damos a continuación.
Proposición Toda fracción impropia, , se puede escribir como suma de un número entero y una fracción propia.
donde es el cociente y es el resto de la división de entre . Demostración:
|
Ejemplo 1:
La fracción es impropia.
Es mayor que la unidad y podemos expresarla como número mixto (Ver Fig. 4):
Ejemplo 2:
La frácción es impropia. La podemos decomponer en la suma de un entero y una fracción propia.
Para ello, dividimos 35 entre 8:
El dividendo , el divisor , el cociente y el resto .
Aplicando la proposición anterior:
y sustituyendo cada letra por su valor:
Actividades sobre el signo de las fracciones y sobre la descomposición de fracciones impropias como suma de un entero y una fracción propia.
Números mixtos
Una fracción mixta o número mixto es la representación de una fracción impropia como un número entero más una fracción propia, en la que se omite el signo de suma.
La fracción situada a la derecha del entero suele escribirse con una tipografía de menor tamaño para que no se confunda con una multiplicación de un número por una fracción.
Números mixtos. Ejemplos de paso de forma fraccionaria a mixta y viceversa.
Conversión de fracción impropia a número mixto
Conversión de fracción impropia a número mixto.
Conversión de fracción impropia a número mixto.
Escribiendo una fracción impropia com un número mixto
Convierte a número mixto la siguiente fracción impropia:
Nota: En el video, la división está realizada por el método anglosajón
Convierte a número mixto la siguiente fracción impropia:
Nota: En el video, la división está realizada por el método anglosajón
Conversión de número mixto a fracción impropia
Conversión de número mixto a fracción impropia.
Conversión de número mixto a fracción impropia.
Convierte a fracción impropia el siguiente número mixto:
Nota: En el video, la división está realizada por el método anglosajón
Convierte a fracción impropia el siguiente número mixto:
Nota: En el video, la división está realizada por el método anglosajón
Números mixtos y fracciones impropias.
Actividades de nivel variable en las que deberás obtener la forma mixta de una fracción.
Calculadora: Fracciones mixtas |
Representación de fracciones en la recta numérica
La representación de números enteros en la recta es algo muy sencillo. Como los enteros son "completos", la distancia entre dos consecutivos siempre es la misma, por lo que basta con escoger esa distancia para nuestra representación. Así, sí quisiésemos situar el número 7, por ejemplo, sólo tendríamos que contar siete saltos hacia la derecha desde el 0. Si quisiésemos representar un número negativo, los saltos serían hacia la izquierda del 0.
Sin embargo, para las fracciones no resulta tan sencillo, porque pueden representar cantidades que no son "completas" y hay que tener mucho cuidado con las distancias que se marcan.
Entonces, ¿cómo representamos una fracción en la recta? Para las fracciones propias es muy sencillo y para las impropias, basta con descomponerlas en parte entera más fracción propia.
Representación de fracciones en la recta numérica
- Si la fracción representa un número entero (el cociente entre numerador y denominador es exacto), la representaremos como tal. (Ver: Números enteros).
- Si la fracción es propia y positiva, se divide el segmento unidad de extremos 0 y 1, en tantas partes iguales como indique el denominador y contamos, desde el 0 hacia la derecha, tantas de esas partes iguales como indique el numerador.
- Si la fracción es propia y negativa, se divide el segmento unidad de extremos -1 y 0, en tantas partes iguales como indique el denominador y contamos, desde el 0 hacia la izquierda, tantas de esas partes iguales como indique el numerador.
- Si la fracción es impropia y positiva, se expresa en la forma ("valor entero" + "fracción propia") y dividimos el segmento de extremos a y a+1 en c partes iguales y contamos, desde el punto a, hacia la derecha, b de esas partes iguales.
- Si la fracción es impropia y negativa, se expresa en la forma ("-valor entero positivo" - "fracción propia de números positivos") y dividimos el segmento de extremos -(a+1) y -a en c partes iguales y contamos, desde el punto -a, hacia la izquierda, b de esas partes iguales.
Para dividir un segmento en parte iguales podemos utilizar el Teorema de Thales. Puedes verlo en el siguiente video:
En este vídeo aplicaremos el Teorema de Tales para dividir un segmento en partes iguales.
Ejemplo: Representación de fracciones en la recta numérica
Representa las fracciones:
Nota: Pasa las fracciones impropias a forma mixta.
Tutorial que explica el concepto de fracción y su representación gráfica, en partes de la unidad y en la recta numérica.
- 00:00 a 04:14: Conceptos básicos. Ejemplos introductorios.
- 04:14 a 05:38: Definición matemática de fracción.
- 05:38 a 09:45: Representación de fracciones como partes de la unidad (Ejemplos).
- 09:45 a 19:26: Representación de fracciones en la recta numérica (Ejemplos).
- 11:25 a 13:45: Aplicación del Teorema de Tales para la división de segmentos en partes iguales.
Representación del conjunto de los racionales en la recta real.
Representación de fracciones en la recta numérica.
Representa las siguientes fracciones en la recta numérica:
Representa las siguientes fracciones en la recta numérica:
Representa las siguientes fracciones en la recta numérica:
Representa las siguientes fracciones en la recta numérica:
Representa las siguientes fracciones en la recta numérica:
Representa las siguientes fracciones en la recta numérica:
Escribe la fracción que representa cada una de las letras representadas en la recta numérica.
Escribe la fracción que representa cada una de las letras representadas en la recta numérica.
Representa sobre la misma recta las fracciones , y .
Representa sobre la misma recta las fracciones , , \;</math> y .
Representa sobre la misma recta las fracciones , , \;</math> y .
Representa en la recta real las fracciones 14/5 y -7/4.
Actividad en la que podrás ver como se representan gráficamente fracciones en la recta numérica.
Escribe la fracción impropia que corresponda a cada punto marcado en la recta.
En esta escena podrás comprobar si sabes representar fracciones en la recta numérica.
Haz en tu cuaderno la representación de las siguientes fracciones en la recta numérica:
Compruéba las soluciones en la siguiente escena:
Fracciones equivalentes
El siguiente videotutorial condensa todo lo visto en este apartado sobre fracciones equivalentes:
Tutorial que explica el concepto de fracciones equivalentes y como obtener la fracción irreducible a una dada.
- 00:00a 04:30: Conceptos básicos y ejemplo introductorio.
- 04:30 a 06:20: Definición matemática de fracción equivalente y propiedad básica de equivalencia.
- 06:20 a 14:20: Ejemplos de identificación de fracciones equivalentes.
- 14:50 a 16:50: Ejemplos de completar fracciones equivalentes.
- 16:50 a 18:30: Definición de fracción irreducible.
- 18:30 a 24:53: Cálculo de fracciones irreducibles (simplificación de fracciones).
- ¿Qué son fracciones equivalentes?
- Cómo conseguir fracciones equivalentes.
- Obtención de la fracción irreducible
- Cómo comprobar que dos fracciones son equivalentes.
Plantilla:Fracciones equivalentes
Plantilla:Actividades fracciones equivalentes
Simplificación de fracciones
- Simplificar una fracción es sustituirla por otra equivalente con el numerador y denominador menores que los de partida.
- Cuando una fracción no se puede simplificar se dice que es irreducible.
Procedimiento: Simplificación
- Para simplificar fracciones se divide numerador y denominador por un mismo número, distinto de 0 y 1. Este proceso se puede repetir hasta hacer la fracción irreducible.
- Si queremos hacer la fracción irreducible en un solo paso debemos dividir numerador y denominador por el m.c.d. de ambos.
Simplifica :
Solución:
- Paso a paso: Dividimos por 2 y luego por 3
- En un solo paso: Calculamos el m.c.d.(24,30) = 6, y dividimos directamente por 6:
Simplificación de fracciones (3 métodos). Fracción irreducible. Ejemplos.
Ejercicio 1 (4'15") Sinopsis: Simplifica:
Ejercicio 2 (4'25") Sinopsis: Simplifica:
Ejercicio 3 (4'00") Sinopsis: Simplifica:
Ejercicio 4 (4'35") Sinopsis: Simplifica:
Ejercicio 5 (6'38") Sinopsis: Simplifica:
Ejercicio 6 (3'42") Sinopsis: Simplifica:
Ejercicio 7 (1'40") Sinopsis: Simplifica: Ejercicio 8 (3'18") Sinopsis: Simplifica: . Ejercicio 9 (3'39") Sinopsis: Simplifica: . Ejercicio 10 (3'45") Sinopsis: Simplifica: . Ejercicio 11 (3'29") Sinopsis: Simplifica: . Ejercicio 12 (3'05") Sinopsis: Simplifica: . | Ejercicio 13 (3'39") Sinopsis: Simplifica: . Ejercicio 14 (4'47") Sinopsis: Simplifica: . Ejercicio 15 (4'11") Sinopsis: Halla la fracción irreducible de: . Ejercicio 16 (3'10") Sinopsis: Halla la fracción irreducible de: . Ejercicio 17 (4'27") Sinopsis: Halla la fracción irreducible de: . Ejercicio 18 (3'02") Sinopsis: Halla la fracción irreducible de: . Ejercicio 19 (2'43") Sinopsis: Halla la fracción irreducible de: . Ejercicio 20 (2'32") Sinopsis: Halla la fracción irreducible de: . Ejercicio 21 (2'40") Sinopsis: Halla la fracción irreducible de: . Ejercicio 22 (3'40") Sinopsis: Halla la fracción irreducible de: . Ejercicio 23 (2'30") Sinopsis: Halla la fracción irreducible de: . Ejercicio 24 (3'29") Sinopsis: Halla la fracción irreducible de: . |
- Actividades en las que deberás simplificar fracciones con o sin ayuda.
- Actividad en la que debes emparejar cada fracción con su irreducible.
Actividad en las que deberás encontrar la fracción irreducible.
Actividades de nivel variable en las que deberás simplificar fracciones.
Simplifica fracciones.
La simplificación de fracciones me proporciona un método para saber si dos fracciones son equivalentes.
Procedimiento
Si al simplificar dos fracciones se obtiene la misma fracción irreducible, entonces las dos fracciones son equivalentes.
Determina si y No se pudo entender (función desconocida\cfrc): \cfrc{54}{81}
son fracciones equivalentes.
Recucir fracciones a común denominador
Plantilla:Reducir fracciones a común denominador
Ordenación de fracciones
Una forma de comparar fracciones consistía en calcular su valor numérico, efectuando la división. A continuación vamos a ver otras formas distintas de hacerlo. Distinguiremos los siguientes casos:
Caso 1: Las fracciones tienen numeradores o denominadores iguales
En algunos casos es fácil comparar dos fracciones sin necesidad de hacer la división. Esto será posible si ambas fracciones tienen los numeradores o denominadores iguales.
Comparar fracciones con numeradores o denominadores iguales
- De dos fracciones con el mismo denominador, es mayor la de mayor numerador.
- De dos fracciones con el mismo numerador, es mayor la de menor denominador.
Comparando fracciones con mismo denominador o mismo numerador.
Compara fracciones con el mismo numerador o denominador.
Caso 2: Las fracciones tienen numeradores y denominadores distintos
Veamos ahora un procedimiento para los casos en que no sean iguales ni los numeradores ni los denominadores. Lo que haremos será reducirlas a común denominador.
En la animación anterior, cuando los denominadores son distintos, no podemos comparar las piezas coloreadas de verde, pues son de tamaños distintos. Al cambiar los denominadores por 12, sí podemos hacer la comparación. Además, 12 no es un denominador cualquiera, es el mínimo común múltiplo de 3 y 4. Se podría usar cualquier otro múltiplo común, pero lo normal es usar el menor posible para no trabajar con números muy grandes.
Ordenar fracciones
- Para ordenar fracciones con distinto denominador debemos primero reducirlas a común denominador.
- Una vez reducidas a común denominador, será mayor la de mayor numerador.
Ejemplo: Ordenar fracciones
Ordena las siguientes fracciones:
Calculamos el m.c.m. de los denominadores:
- .
A continuación, las reducimos a común denominador:
Nótese que hemos multiplicado numerador y denominador por el resultado de dividir el m.c.m. , 12, por cada denominador.
Ordenamos las fracciones obtenidas, y a partir de ellas las fracciones de partida:
Ordena las siguientes fracciones:
a)
b)
b)
Ejercicio 1 (5'35") Sinopsis: Comparación de fracciones. Ejercicio 2 (6'43") Sinopsis: Ordenar fracciones de forma ascendente. Atención al método usado para obtener el m.c.m. Ejercicio 3 (7'33") Sinopsis: Ordenar fracciones de forma descendente. Ejercicio 4 (2'07") Sinopsis: Compara y mediante la comparación de los productos cruzados. Ejercicio 5 (1'40") Sinopsis: Compara y mediante la comparación de los productos cruzados. Ejercicio 6 (1'55") Sinopsis: Compara y mediante la comparación de los productos cruzados. | Ejercicio 7 (4'03") Sinopsis: Compara y mediante la comparación de los productos cruzados. Ejercicio 8 (3'53") Sinopsis: Compara y mediante la comparación de los productos cruzados. Ejercicio 9 (1'56") Sinopsis: Compara y mediante la comparación de los productos cruzados. Ejercicio 10 (9'56") Sinopsis: Compara las fracciones: y . Ejercicio 11 (6'08") Sinopsis: Ordena las fracciones: , y . Ejercicio 12 (7'52") Sinopsis: Ordena las fracciones: , , , y . |
Actividad en la que podrás ver como se comparan fracciones reduciéndolas a común denominador, tanto si son positivas como negativas.
Actividad en la que debes ordenas varias fracciones.
Actividad en la deberás comparar fracciones.
Ejercicios de autoevaluación sobre ordenación y comparación de fracciones.
Ordena fracciones.
Actividades
- Actividad en la que debes ordenas varias fracciones.
- Actividad en la que debes representar varias fracciones en la recta real.
Suma y resta de fracciones
Procedimiento: Suma de fracciones
Para sumar o restar fracciones:
- Si las fracciones son homogéneas (mismo denominador), se suman o restan los numeradores y se deja el mismo denominador.
- Si son heterogéneas (distinto denominador), primero se reducen a común denominador y luego se procede como en el caso anterior.
Si en una suma de fracciones alguno de los sumandos es un número entero, se le considerará como si fuera una fracción con denominador unidad.
Cuando hagamos operaciones con fracciones, no sólo la suma y la resta, es posible que el resultado sea una fracción que se pueda simplificar. Es importante que te acostumbres a simplificar el resultado todo lo que sea posible. En la Fig.1, por ejemplo, el resultado que deberíamos dar es 3/4 en lugar de 6/8.
Ejemplo: Suma y resta de fracciones
Calcula:
Solución:
Tenemos que calcular:
Calculamos el m.c.m. de los denominadores:
y reducimos las fracciones a común denominador:
Una vez que tenemos las fracciones homogéneas, sumamos o restamos los númeradores, dejando el mismo denominador:
Finalmente simplificaríamos si se pudiese.- Suma y resta de fracciones con el mismo denominador.
- Suma y resta de fracciones con el distinto denominador.
- Ejemplos.
Tutorial que explica la suma y resta con fracciones de igual denominador de distintos denominadores y con paréntesis.
- Suma de fracciones con el mismo o con distinto denominador.
- Ejemplos.
- Propiedades.
Suma de fracciones con el mismo denominador. Lo que en este video se explica es válido para la resta sin más que cambiar suma por resta.
Suma de fracciones con el mismo denominador.
Resta de fracciones con el mismo denominador.
Suma de fracciones mixtas con el mismo denominador.
Resta de fracciones mixtas con el mismo denominador.
Suma y resta de fracciones con el mismo denominador:
a) b) c) d) e)
Suma y resta de fracciones con el mismo denominador.
Suma de fracciones usando el método gráfico.
Resta de fracciones usando el método gráfico.
Suma de fracciones usando el método del m.c.m.
Resta de fracciones usando el método del m.c.m.
Suma de números mixtos usando el método del m.c.m.
Resta de números mixtos usando el método del m.c.m.
Suma y resta de fracciones usando el método del m.c.m.
Otro método para sumar o restar fracciones, fácil de recordar, que no requiere del m.c.m, pero que a veces precisa simplificar más al final. Lo que en este video se explica es válido para la resta sin más que cambiar suma por resta.
Ejercicio 1 (3'43") Sinopsis: Suma y resta de fracciones con distinto denominador (método rápido) Ejercicio 2 (7'26") Sinopsis: Suma y resta de fracciones con distinto denominador (método del m.c.m.): a) b) Ejercicio 3 (2'00") Sinopsis: Suma de fracciones con distinto denominador (método rápido): a) b) Ejercicio 4 (1'51") Sinopsis: Resta de fracciones con distinto denominador (método rápido): a) b) Ejercicio 5 (11'01") Sinopsis: Suma de fracciones con distinto denominador (método del m.c.m.): a) b) c) Ejercicio 6 (4'28") Sinopsis: Suma y resta de fracciones con distinto denominador (método del m.c.m.): Ejercicio 7 (6'46") Sinopsis: Suma y resta de fracciones con distinto denominador (método del m.c.m.): Ejercicio 8 (3'25") Sinopsis: Suma y resta de fracciones con distinto denominador:
Ejercicio 9 (2'18") Sinopsis: Suma y resta de fracciones con distinto denominador (método rápido): | Ejercicio 10 (2'05") Sinopsis: Suma y resta de cuatro fracciones con distinto denominador(método del m.c.m.): Ejercicio 11 (0'48") Sinopsis: Suma de un entero y una fracción: Ejercicio 12 (0'43") Sinopsis: Resta de un entero y una fracción. Ejercicio 13 (2'56") Sinopsis: Suma de números mixtos. Ejercicio 14 (2'40") Sinopsis: Resta de números mixtos. Ejercicio 15 (11'55") Sinopsis: Suma y resta de números mixtos. Ejercicio 16 (8'15") Sinopsis: Calcula: Ejercicio 17 (6'32") Sinopsis: Calcula: |
Si Fernando recoge 3/4 de kilo de verdura y David recoge 1/8 de kilo de verdura, calcula los kilos de verdura que han recogido entre los dos e indica aquél que ha recogido menos cantidad.
Suma de fracciones por el método del m.c.m.
Suma y resta de fracciones por el método del m.c.m.
Suma y resta de fracciones. Propiedades.
Suma y resta de fracciones con o sin paréntesis.
Multiplicación y división de fracciones
Videotutorial sobre la multiplicación y división de fracciones.
Tutorial que explica la multiplicación y división con fracciones de manera simple y en forma combinada, trabajando la simplificación previa.
Actividades en las que aprenderás la multiplicación de fracciones y sus propiedades.
Multiplicación de fracciones
Procedimiento: Multiplicación de fracciones
Para multiplicar fracciones, se pone como numerador, el producto de los numeradores, y como denominador, el producto de los denominadores.
- Si en una multiplicación de fracciones alguno de los sumandos es un número entero, se le considerará como si fuera una fracción con denominador unidad.
- La regla de los signos que utilizabamos para multiplicar números enteros sigue siendo válida con fracciones
Es recomendable, al igual que con cualquier otra operación, simplificar el resultado final, sin embargo, la forma en que se realiza el producto de dos fracciones permite, en ocasiones, simplificar antes de realizar las multiplicaciones de los numeradores y denominadores. Así ahorraras tiempo no teniendo que simplificar posteriormente.
Ejemplo: Multiplicación de fracciones
Calcula:
Solución:
Multiplicamos numeradores y denominadores, simplificando antes de efectuar el producto:
Aprende a multiplicar fracciones.
Aprende a multiplicar fracciones.
Aprende a multiplicar números naturales por fracciones.
Significado gráfico de la multiplicación de dos fracciones.
Representación en la recta numérica de la multiplicación de dos fracciones.
Aprende a multiplicar números por fracciones.
- Multiplicación de fracciones.
- Ejemplos.
- Propiedades.
Multiplica:
Multiplica:
a) b) c)
Multiplica un entero por una fracción:
a)
b)
Multiplica fracciones mixtas con fracciones y enteros:
Multiplica:
Compara las siguientes fracciones sin hacer la multiplicación:
Multiplica:
Para elaborar cierto pastel, la receta dice que por cada libra se debe usar 1 taza y 3/4 de almendras. Si nos encargan un pastel de 3 libras y media, ¿cuántas tazas de almendras son necesarias?
Una receta para pastelillos de plátano y avena requiere 3/4 tazas de avena. Si preparamos 1/2 de la receta, ¿cuánta avena necesitaremos?
Gina tenía 2/3 de taza de detergente. Si usó la mitad el viernes para lavar todas sus sábanas, ¿Cuánto le sobra?.
Puedes andar en bicicleta de milla por minuto. Si tardas de minuto en llegar a la casa de tu amigo, ¿Cuál es la distancia entre tu casa y la suya?.
Actividades en las que aprenderás y practicarás la multiplicación de fracciones.
Actividades para practicar la multiplicación de fracciones.
División de fracciones
Procedimiento: División de fracciones
Para dividir dos fracciones, se multiplica la primera fracción por la inversa de la segunda.
El resultado es otra fracción, cuyo numerador, es el producto del primer numerador por el segundo denominador, y cuyo denominador es el producto del primer denominador por el segundo numerador.
- Si en una división de fracciones alguno de los sumandos es un número entero, se le considerará como si fuera una fracción con denominador unidad.
- La regla de los signos que utilizabamos para dividir números enteros sigue siendo válida con fracciones
Es recomendable, al igual que con cualquier otra operación, simplificar el resultado final, sin embargo, al igual que ocurre con la multiplicación de fracciones, en ocasiones, podremos simplificar antes de efectuar los productos cruzados de los numeradores y denominadores. Lo que haremos es dejar indicados los productos cruzados y simplificarlos, si es posible, antes de multiplicarlos. Así ahorraras tiempo no teniendo que simplificar posteriormente.
Ejemplo:
Calcula:
Solución:
Multiplicamos en cruz, simplificando antes de efectuar el producto:Aprende a dividir fracciones.
Aprende a dividir fracciones.
Aprende a dividir fracciones (2 métodos). Ejercicios propuestos y resueltos.
División de dos fracciones usando la fracción inversa. Ejemplos.
- División de fracciones.
- Ejemplos.
- Ejercicios con operaciones combinadas.
División de fracciones. Ejemplo.
Cómo se dividen las fracciones. Ejemplos.
Equivalencias fundamentales en la multiplicación y división de fracciones.
Fracciones de términos no enteros y fracciones de términos racionales
Simplificación de fracciones de términos racionales.
Las propiedades de la división de fracciones
Entendiendo el concepto de división de fracciones
Calcula:
Calcula y expresa la solución como un número mixto:
Calcula:
- 1) ; 2) ; 3) ; 4)
- 5) ; 6) ; 7)
Calcula:
- 8) ; 9) ; 10)
- 11) ; 12) ; 13)
Corrige esta cuenta si crees que es incorrecta:
- 14)
Calcula:
- 15) ; 16) ; 17) ; 18)
- 19) ; 20) ; 21)
Calcula:
- 22) ; 23) ; 24)
- 25) ; 26) ; 27)
Escribe la fracción que falta para que se verifique la igualdad:
- 52)
- 53)
División de fracciones.
a) b)
Divide un entero por una fracción:
Divide fracciones mixtas con fracciones:
En la fiesta de cumpleaños de Luisa ha sobrado 1/3 del pastel. Jaime lo ha visto y, como tenía hambre, se ha comido la mitad. ¿Qué parte o fracción de pastel se ha comido Jaime?. ¿Qué parte o fracción del pastel sobra?
La camiseta de un bebe se fabrica con 4/5 metros de tela. ¿Cuántas camisetas se pueden hacer con 48 metros de tela?
Actividades en las que aprenderás y practicarás la división de fracciones.
Actividades para practicar la división de fracciones.
Actividades para practicar la división de fracciones.
Operaciones combinadas con fracciones
A la hora de operar con fracciones seguiremos las mismas pautas que con números enteros:
Ver: Jerarquía de las operaciones con números enteros
Jerarquía de las operaciones
A la hora de operar seguiremos las siguientes pautas:
- Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
- Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
- Las potencias y las raíces.
- Las multiplicaciones y las divisiones (de izquierda a derecha).
- Las sumas y las restas.
- Cuando aparecen paréntesis dentro de otros paréntesis, se puede optar por cambiar los paréntesis más exteriores por corchetes, con el fin de facilitar la lectura de la operación.
- Cuando resuelvas los paréntesis puedes completar las operaciones que encierren o aplicar la propiedad distributiva.
- En cada uno de los pasos que des para resolver una expresión con operaciones combinadas se puede llevar a cabo más de una operación, siempre que no suponga romper el orden que acabamos de establecer.
Ejemplo:
Efectúa las siguientes operaciones combinadas:
Solución:
- Los paréntesis:
- Las potencias:
- Las multiplicaciones y divisiones:
- Las sumas y restas:
- Finalmente simplificaríamos si pudiésemos. En este caso la fracción es irreducible.
Tutorial que explica las operaciones combinadas con fracciones, señalando el orden que hay que seguir a la hora de realizar las operaciones con números (jerarquía de operaciones).
- 00:00 a 03:28: Conceptos básicos. Jerarquía de operaciones.
- 03:28 a 20:35: 7 Ejercicios de operaciones combinadas.
Operaciones combinadas con fracciones.
Operaciones combinadas con fracciones.
Operaciones combinadas con fracciones.
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
- a)
- b)
Calcula:
28)
29)
Calcula:
30)
31)
Calcula:
32)
33)
34)
Calcula:
35)
36)
Calcula:
37)
38)
Calcula:
39) ; 40) ; 41)
42) ; 43)
Opera y simplifica:
Opera y simplifica:
Opera y simplifica números mixtos:
Opera y simplifica:
Opera y simplifica:
Operaciones combinadas con 3 fracciones sin paréntesis.
Operaciones combinadas con 4 fracciones con o sin paréntesis.
Multiplicaciones, divisiones y operaciones combinadas de fracciones.
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Tutorial que explica las operaciones con fracciones en las que intervienen "castillos".
Calcula:
- 44) ; 45) ; 46)
- 47) ; 48)
Calcula:
- 49) ; 50) ; 51)
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Opera y simplifica:
Actividades para aprender y practicar las operaciones combinadas con fracciones (Nivel 3).
Actividades para aprender y practicar las operaciones combinadas con fracciones.
Actividades para aprender y practicar las operaciones combinadas con fracciones. Incluye operaciones con paréntesis implícitos (castillos).
Ejercicios de autoevaluación sobre operaciones combinadas con fracciones.
Ejercicios de autoevaluación sobre operaciones combinadas con fracciones.
Nota: Esta actividad también incluye raíces de fracciones. En el siguiente enlace puedes ver acerca de ellas.
Potencias y raíces de fracciones
Ejercicios propuestos
Ejercicios propuestos: Operaciones combinadas con fracciones |
(Pág. 15)
La fracción como operador
Para calcular una fracción de una cantidad , procederemos multiplicando la fracción por la cantidad:
Ejemplos: La fracción como operador
- Un cartero ha de repartir los 3/28 del total de 4004 cartas. ¿Cuántas cartas le correspoden?
- De una herencia de 104000 €, Alberto posee 3/8; Berta, 5/12, y Claudia, el resto. Claudia emplea 2/5 de su parte en pagar deudas. ¿Cuánto le queda?
Solución 1:
cartas
Solución 2:
Calculemos primero la fracción correspondiente a Claudia:
que equivale a:
€
Claudia emplea en pagar deudas 2/5 de esa cantidad:
€
Restando las dos cantidades anteriores tendremos lo que le queda a Claudia:
€La fracción como operador. Ejemplos.
Tutorial en el que se dan los conceptos matemáticos de proporción y se explica/justifica como calcular proporciones de cantidades o bien la cantidad a la que se le aplicó una proporción.
Cómo se calcula la fracción de un número.
He pagado 2/5 partes de una bici que costaba 90€. ¿Cuánto me falta por pagar?
He pagado 2/5 partes de una bici y me faltan 90€ por pagar. ¿Cuánto costaba la bici?
He pagado 2/5 partes de una bici que suponen 90€ del total. ¿Cuánto costaba la bici?
Ejercicios propuestos
Ejercicios propuestos: La fracción como operador |
Ejercicios y problemas
Problemas con fracciones.
Problemas con fracciones.
Problemas para practicar operaciones con fracciones
4 problemas:
- Una caja contiene 60 galletas. Raúl se come 1/3 y Manuel 2/5. ¿Cuántas galletas se ha comido cada uno?
- Pedro ha recorrido en bici 6 km, que son 3/4 de la etapa de hoy. ¿Cuál es el recorrido total de la etapa?
- Alicia tiene 30€ de paga mensual. La primera semana gastó 2/5. La segunda gastó 5/6 de lo que le quedaba. ¿Cuánto gastó cada semana?.¿Cuánto le queda?
- Tenemos que vaciar una piscina. Sacamos por la mañana 2/5 del agua y por la tarde 1/4 de lo que quedaba. Si la final del día había 180 litros, ¿cuál es la capacidad de la piscina?.
2 problemas:
- Tres camiones tienen que trasladar 2400 kg de escombros. El primer camión se lleva 1/3 y después, el segundo, 2/5 del total. ¿Cuánto trasladará el tercero?
- Tres camiones tienen que trasladar 2400 kg de escombros. El primer camión se lleva 1/3 y después, el segundo, 2/5 de lo que queda. ¿Cuánto trasladará el tercero?
Problemas con fracciones.
Problemas con fracciones.
Problemas con fracciones.
Mi padre se ha comido 1/8 de la tableta de turrón y mi madre 2/7 de lo que quedaba. Si costó 4€, ¿cuántos céntimos se comió cada uno?.¿Qué fracción queda?
Problemas resueltos sobre fracciones.
Ejercicios resueltos sobre fracciones.
Expresión decimal de una fracción
Paso de fracción a decimal
Para pasar de fracción a decimal basta con hacer la división del numerador entre el denominador. Pueden darse los siguientes casos, según sea la expresión decimal resultante:- Expresión decimal exacta: Si tiene un número finito de decimales.
- Por ejemplo: .
- Expresión decimal periódica pura: Si tiene un número infinito de decimales que se repiten. La parte que se repite se llama periodo.
- Por ejemplo: . El periodo es 54.
- Expresión decimal periódica mixta: Si tiene un número infinito de decimales que se repiten a partir de una cierta posición decimal. La parte que se repite se llama periodo y la parte decimal previa al periodo se llama anteperiodo.
- Por ejemplo: . El periodo es 6 y el anteperiodo 2.
Identificar el tipo de expresión decimal sin hacer la división
Se puede saber, sin hacer la división, que tipo de expresión decimal tiene una fracción. Para ello, deberemos simplificar la fracción y nos fijaremos en la descomposición del denominador en factores primos. Tendremos los siguientes casos:
- Si el denominador sólo contiene factores que sean 2 ó 5, la fracción tiene una expresión decimal exacta.
- Si el denominador no contiene factores que sean 2 ó 5, la fracción tiene una expresión decimal periódica pura.
- Si el denominador contiene mezcla de factores que sean 2 ó 5, con otros distintos de 2 ó 5, la fracción tiene una expresión decimal periódica mixta.
Actividad Interactiva: Expresión decimal de una fracción
Actividad 1. Averigua el tipo de expresión decimal de una fracción y hállala posteriormente
Actividad: Pulsa el botón "EJERCICIO" para generar una fracción. Debes averiguar de que tipo de expresión decimal se trata sin hacer la división. Luego halla su expresión decimal. Lo haces en tu cuaderno, escribe la solución en la casilla "Expresión Decimal" y pulsa el botón "SOLUCIÓN" para ver si lo has hecho bien. |
Paso de decimal a fracción
Recíprocamente, todo número con un desarrollo decimal puede expresarse en fracción de la siguiente manera:
Decimales exactos: Se escribe en el numerador la expresión decimal sin la coma, y en el denominador un uno seguido de tantos ceros como cifras decimales.
Decimales periódicos puros: La fracción de un número decimal periódico tiene como numerador la diferencia entre el número escrito sin la coma y la parte anterior al periodo; y como denominador, tantos "9" como cifras tiene el periodo.
Pulsa INICIO para ver más ejemplos
Decimales periódicos mixtos: Tendrá como numerador la diferencia entre a y b, donde a es el número escrito sin la coma, y b es el número sin la parte decimal periódica, escrito como número entero. El denominador tendrá tantos "9" como cifras tiene el periodo y otros tantos "0" como cifras tenga el anteperiodo.
Pulsa INICIO para ver más ejemplos
Veamos unos ejemplos que ilustren el porqué de tales procedimientos:
Ejemplo: Paso de decimal a fracción
- Expresa en forma de fracción los números decimales:
- a) b)
- a) Restando:
- b) Restando:
Actividad Interactiva: Paso de decimal a fracción
Actividad 1. Averigua la fracción que corresponde con la expresión decimal.
Actividad: Pulsa el botón "EJERCICIO" para generar una expresión decimal. Debes buscar la fracción generatriz. No olvides simplificarla. Lo haces en tu cuaderno, escribes el numerador de la solución en el control numerador y el denominador de la solución en el control denominador y pulsas el botón "SOLUCIÓN" para ver si lo has hecho bien. |
Ejercicios y problemas
Ejercicios
Ejercicios: 1. Agrupa las fracciones que sean equivalentes: Solución: 2. Simplifica las fracciones:
Solución: a) b) c) 3. Ordena de menor a mayor las fracciones: Solución: 4. Opera las fracciones:
Solución: a) b) c) 5. Simplifica y expresa en forma de fracción:
Solución: a) b) c) 6. Simplifica:
Solución: a) b) c) 7. Calcula utilizando las propiedades de las potencias:
Solución:
8. Sin hacer la división, indica qué tipo de decimal resulta:
Solución: a) Decimal exacto; b) Decimal periódico puro; c) Decimal periódico mixto. 8. Expresa en forma de fracción:
Solución: a) b) c) |
Actividades Interactivas:Potencias
Actividad 1: Producto de potencias.
Actividad: Escribe en tu cuaderno los siguientes productos en forma de potencia:
Actividad 2: Cociente de potencias.
Actividad: Escribe en tu cuaderno los siguientes cocientes en forma de potencia:
Actividad 3: Potencia de un producto.
Actividad: Expresa en forma de producto de potencias los siguientes expresiones:
Actividad 4: Potencia de un cociente.
Actividad: Expresa en forma de cociente de potencias los siguientes expresiones:
Actividad 5: Potencia de una potencia.
Actividad: Escribe en tu cuaderno las siguientes potencias en forma de potencia con un solo exponente:
|