Números racionales

De Wikipedia

Tabla de contenidos

Fracciones

Los números enteros surgen porque no bastaba con los números naturales para cubrir ciertas necesidades. Sin embargo, tampoco los enteros son suficientes. Hay muchas situaciones en las que necesitamos representar unidades incompletas. Por ejemplo, cuando vas al supermercado y compras un cuarto de kilo de gambas, es porque tienes suficiente con solo una parte y no necesitas la totalidad del kilo; o cuando te dicen que el 99% de una medusa es agua, te queda muy claro que le falta muy poco para ser toda agua, pero que no lo es en su totalidad.

Para estos casos se inventaron las fracciones. Curiosamente, desde un punto de vista histórico, las necesidad de las fracciones fue cubierta antes que la necesidad de los números negativos. Probablemente sea más natural hablar de partes incompletas de algo (fracciones) que de partes que "no están" (negativos). Fueron los egipcios, hace más de 3500 años, los primeros en usar fracciones. No utilizaban la barra que usamos nosotros para separar numerador de denominador, sino un símbolo parecido a un ojo, y sólo usaban el 1 como numerador (fracciones unitarias), pero sentaron las bases de lo que hacemos nosotros hoy en día.

Fig. 1: Fracciones egipcias
Aumentar
Fig. 1: Fracciones egipcias

Un toque divertido para empezar el tema:

Las fracciones

Cuando necesitamos expresar cantidades que representan unidades incompletas o partes de la unidad, además de los números decimales, disponemos de las fracciones.

  • Una fracción es una expresión de la forma \frac{a}{b}\;, o bien, a/b\;, donde a\; y b\; son números enteros, siendo b \ne 0 \;.
  • Al número a\; lo llamaremos numerador y al número b\;, denominador.



El valor de una fracción es el resultado de dividir numerador entre denominador. Según su valor, una fracción pueden ser:

  • Un número entero: Si el resultado de hacer la división es exacto.
  • Un número fraccionario: Si el resultado de hacer la división no es exacto.



Fig. 2: Fracciones representadas mediante diagramas de tarta. La unidad es también una fracción cuyo numerador y denominador valen ambos 1
Aumentar
Fig. 2: Fracciones representadas mediante diagramas de tarta. La unidad es también una fracción cuyo numerador y denominador valen ambos 1
Fig. 3: Coger 2 partes de 5 equivale a coger 4 décimas de 1 unidad.
Aumentar
Fig. 3: Coger 2 partes de 5 equivale a coger 4 décimas de 1 unidad.

Los números racionales

El conjunto de los números racionales es el conjunto de todas las fracciones:

\mathbb{Q} = \lbrace \cfrac {a}{b}\; / \; a,b \in \mathbb{Z}, \, b \ne 0 \rbrace

ejercicio

Obseva que:


  • Si el numerador es divisible por el denominador, la fracción representa a un número entero. Así, los racionales contienen a los enteros y éstos a los naturales.

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}
  • Todos los números decimales exactos o periódicos se pueden expresar en forma de fracción. Por tanto, son números racionales.
  • Cuando el número de decimales es infinito y no periódico, como ocurre con el número pi (π), no podemos expresarlo en forma de fracción. A estos números los llamaremos irracionales.

ejercicio

Proposición


La suma y el producto de dos números racionales es otro número racional.

Representación de los números racionales mediante diagramas de Vennportaleducativo.net
Aumentar
Representación de los números racionales mediante diagramas de Venn

portaleducativo.net

Fracciones propias e impropias

¿Qué pasa si el numerador es mayor que el denominador? ¿Cómo se interpreta el hecho de tomar más partes de la unidad de las que que hay?

Vamos a dar respuesta a estas preguntas a continuación, pero primero necesitamos ver los conceptos de fracción propia e impropia.

  • Fracciones propias son aquellas cuyo numerador (en valor absoluto) es menor que el denominador (en valor absoluto). Su valor absoluto es menor que 1.
  • Fracciones impropias son aquellas que no son propias. Su valor absoluto es mayor que 1.

Forma mixta de una fracción

Las fracciones impropias representan algo mayor que el todo, es decir, cuando trabajamos con una fracción impropia damos a entender que tenemos unidades completas de algo y, posiblemente, alguna unidad incompleta.

Esto queda de manifiesto en la proposición y en los ejemplos que damos a continuación.

ejercicio

Proposición


Toda fracción impropia, \cfrac{D}{d}\;, se puede escribir como suma de un número entero y una fracción propia.     

\cfrac{D}{d}=c+\cfrac{r}{d}

    

donde c\;\! es el cociente y r\;\! es el resto de la división de D\;\! entre d\;\!.

Fig. 4: Para representar fracciones mayores que la unidad hay que utilizar más de un diagrama de tarta
Aumentar
Fig. 4: Para representar fracciones mayores que la unidad hay que utilizar más de un diagrama de tarta
\cfrac{10}{8}= 1 +\cfrac{2} {8} > 1

Números mixtos

Una fracción mixta o número mixto es la representación de una fracción impropia como un número entero más una fracción propia, en la que se omite el signo de suma.

a \begin{matrix} \frac{b}{c} \end{matrix}=a+\cfrac{b}{c} \ \ ,\  (b<c)



Calculadora

Calculadora: Fracciones mixtas


A) Para convertir una fracción impropia a forma mixta usaremos la tecla Fracción.
B) Para pasar de nuevo a fracción impropia pulsaremos otra vez Fracción.

Representación de fracciones en la recta numérica

La representación de números enteros en la recta es algo muy sencillo. Como los enteros son "completos", la distancia entre dos consecutivos siempre es la misma, por lo que basta con escoger esa distancia para nuestra representación. Así, sí quisiésemos situar el número 7, por ejemplo, sólo tendríamos que contar siete saltos hacia la derecha desde el 0. Si quisiésemos representar un número negativo, los saltos serían hacia la izquierda del 0.

Sin embargo, para las fracciones no resulta tan sencillo, porque pueden representar cantidades que no son "completas" y hay que tener mucho cuidado con las distancias que se marcan.

Entonces, ¿cómo representamos una fracción en la recta? Para las fracciones propias es muy sencillo y para las impropias, basta con descomponerlas en parte entera más fracción propia.

ejercicio

Representación de fracciones en la recta numérica


  • Si la fracción representa un número entero (el cociente entre numerador y denominador es exacto), la representaremos como tal. (Ver: Números enteros).
  • Si la fracción es propia y positiva, se divide el segmento unidad de extremos 0 y 1, en tantas partes iguales como indique el denominador y contamos, desde el 0 hacia la derecha, tantas de esas partes iguales como indique el numerador.
  • Si la fracción es propia y negativa, se divide el segmento unidad de extremos -1 y 0, en tantas partes iguales como indique el denominador y contamos, desde el 0 hacia la izquierda, tantas de esas partes iguales como indique el numerador.
  • Si la fracción es impropia y positiva, se expresa en la forma a+\cfrac{b}{c}\; ("valor entero" + "fracción propia") y dividimos el segmento de extremos a y a+1 en c partes iguales y contamos, desde el punto a, hacia la derecha, b de esas partes iguales.
  • Si la fracción es impropia y negativa, se expresa en la forma -a-\cfrac{b}{c}\; ("-valor entero positivo" - "fracción propia de números positivos") y dividimos el segmento de extremos -(a+1) y -a en c partes iguales y contamos, desde el punto -a, hacia la izquierda, b de esas partes iguales.



ejercicio

Ejemplo: Representación de fracciones en la recta numérica


Representa las fracciones:

-\cfrac{5}{2}, -\cfrac{1}{2}, \cfrac{10}{7}, \cfrac{23}{5}

Fracciones equivalentes

El siguiente videotutorial condensa todo lo que se va a ver en este tema sobre fracciones equivalentes:

Dos fracciones son equivalentes si tienen el mismo valor.

Fig. 1: Las fracciones equivalentes tienen el mismo valor.
Aumentar
Fig. 1: Las fracciones equivalentes tienen el mismo valor.

Obtención de fracciones equivalentes

Piensa un número. Multiplícalo por 2. Divide el resultado entre 2. ¿Qué sucede?. Lógicamente, el número vuelve a ser el que era al principio porque la multiplicación y la división son operaciones inversas.

Esta idea, junto al hecho de que las fracciones sean el cociente de dos números enteros, permite que muchas fracciones representen el mismo número racional. Más que muchas, infinitas.

Piensa, por ejemplo, en la fracción 1/2. Si multiplicamos su numerador y su denominador por el mismo número entero distinto de cero, en realidad, no estamos variando el valor de la fracción.

Gráficamente, multiplicar el numerador y el denominador de una fracción por el mismo número significa partir el "todo" que estamos considerando en piezas más pequeñas, pero en realidad no varía la cantidad de ese "todo" que se toma. Fíjate en la animación para entenderlo mejor.

Las piezas son cada vez más pequeñas, pero la cantidad coloreada de rojo (lo que representa la fracción) no varía.
Aumentar
Las piezas son cada vez más pequeñas, pero la cantidad coloreada de rojo (lo que representa la fracción) no varía.

ejercicio

Obtención de fracciones equivalentes


Si se multiplica o se divide (de forma exacta) el numerador y el denominador de una fracción por un mismo número distinto de cero, se obtiene una fracción equivalente. Si además el número por el que multiplicamos o dividimos es distinto de 1, estos procedimientos reciben el nombre de amplificación y simplificación, respectivamente.




Amplificación

Simplificación

Simplificación de fracciones

  • Simplificar una fracción es sustituirla por otra equivalente con el numerador y denominador menores que los de partida.
  • Cuando una fracción no se puede simplificar se dice que es irreducible.

ejercicio

Procedimiento: Simplificación


  • Para simplificar fracciones se divide numerador y denominador por un mismo número, distinto de 0 y 1. Este proceso se puede repetir hasta hacer la fracción irreducible.
  • Si queremos hacer la fracción irreducible en un solo paso debemos dividir numerador y denominador por el m.c.d. de ambos.

La simplificación de fracciones me proporciona un método para saber si dos fracciones son equivalentes.

ejercicio

Procedimiento


Si al simplificar dos fracciones se obtiene la misma fracción irreducible, entonces las dos fracciones son equivalentes.

Cómo averiguar si dos fracciones son equivalentes

Con lo que llevamos visto hasta ahora, tenemos dos formas de comprobar que dos fracciones son equivalentes:

  • Calculando el valor de cada una de ellas, dividiendo numerador entre denominador, y viendo si el resultado es el mismo.
  • Calculando la fracción irreducible de cada una de ellas y viendo si ambas fracciones irreducibles son iguales.

A continuación vamos a ver un resultado que permite hacer la comprobación de forma más simple. Lo llamaremos el método de multiplicar "en cruz".

ejercicio

Comprobación de que dos fracciones son equivalentes


Para saber si dos fracciones son equivalentes, comprobaremos que los productos cruzados de sus numeradores y denominadores coinciden.

\cfrac{a}{b}=\cfrac{c}{d} \quad\Leftrightarrow\quad a \cdot d=b \cdot c

Cómo averiguar el término que falta en una igualdad entre fracciones

Si nos dan dos fracciones equivalentes y en una de ellas desconocemos uno de sus términos, utilizaremos el resultado anterior para averiguarlo.

Actividades

Recucir fracciones a común denominador

Comparar o sumar fracciones nos resultará mucho más fácil si éstas vienen dadas con el mismo denominador. Esto lo podemos conseguir gracias a la equivalencia de fracciones. Lo que tendríamos que hacer sería conseguir, a partir de las fracciones dadas, otras equivalentes pero que tengan el mismo denominador.

Reducir fracciones a común denominador consiste en sustituirlas por otras equivalentes con el mismo denominador.

ejercicio

Procedimiento: Reducir fracciones a común denominador


Para reducir fracciones a común denominador:

  1. Eligiremos como denominador a un múltiplo común de todos los denominadores. Normalmente se elige el m.c.m. de ellos.
  2. Amplificamos todas las fracciones para que tengan el mismo denominador, el que acabamos de calcular en el paso anterior. Para ello no tienes más que dividir ese denominador común entre el denominador inicial de la fracción correspondiente y multiplicar el resultado de esa división por el numerador inicial. El resultado de ese producto será el numerador de la fracción amplificada.

ejercicio

Ejemplo: Reducción de fracciones a común denominador


Reduce a común denominador las fracciones: \cfrac{3}{4} \, , \ \cfrac{4}{6}  \, \ y \ \cfrac{1}{2}

Ordenación de fracciones

Una forma de comparar fracciones consistía en calcular su valor numérico, efectuando la división. A continuación vamos a ver otras formas distintas de hacerlo. Distinguiremos los siguientes casos:

Caso 1: Las fracciones tienen numeradores o denominadores iguales

En algunos casos es fácil comparar dos fracciones sin necesidad de hacer la división. Esto será posible si ambas fracciones tienen los numeradores o denominadores iguales.

ejercicio

Comparar fracciones con numeradores o denominadores iguales


  • De dos fracciones con el mismo denominador, es mayor la de mayor numerador.
  • De dos fracciones con el mismo numerador, es mayor la de menor denominador.

Caso 2: Las fracciones tienen numeradores y denominadores distintos

Veamos ahora un procedimiento para los casos en que no sean iguales ni los numeradores ni los denominadores. Lo que haremos será reducirlas a común denominador.

En la animación anterior, cuando los denominadores son distintos, no podemos comparar las piezas coloreadas de verde, pues son de tamaños distintos. Al cambiar los denominadores por 12, sí podemos hacer la comparación. Además, 12 no es un denominador cualquiera, es el mínimo común múltiplo de 3 y 4. Se podría usar cualquier otro múltiplo común, pero lo normal es usar el menor posible para no trabajar con números muy grandes.

ejercicio

Ordenar fracciones


  • Para ordenar fracciones con distinto denominador debemos primero reducirlas a común denominador.
  • Una vez reducidas a común denominador, será mayor la de mayor numerador.

ejercicio

Ejemplo: Ordenar fracciones


Ordena las siguientes fracciones: \cfrac{4}{6} \, , \ \cfrac{3}{4}  \, \ y \ \cfrac{1}{2}

Actividades

Operaciones con fracciones

Suma y resta de fracciones

ejercicio

Procedimiento: Suma de fracciones


Para sumar o restar fracciones:

  • Si las fracciones son homogéneas (mismo denominador), se suman o restan los numeradores y se deja el mismo denominador.
  • Si son heterogéneas (distinto denominador), primero se reducen a común denominador y luego se procede como en el caso anterior.





ejercicio

Ejemplo: Suma y resta de fracciones


Calcula: 2+\cfrac{3}{4} + \cfrac{4}{6} - \cfrac{1}{2}

Opuesta de una fracción

  • Dos fracciones son opuestas cuando su suma es cero.
  • Dada una fracción \cfrac {a}{b}, su opuesta es la fracción -\cfrac {a}{b}.

Multiplicación y división de fracciones

Multiplicación de fracciones

ejercicio

Procedimiento: Multiplicación de fracciones


Para multiplicar fracciones, se pone como numerador, el producto de los numeradores, y como denominador, el producto de los denominadores.

\cfrac{a}{b} \cdot \cfrac{c}{d}=\cfrac{a \cdot c}{b \cdot d}





ejercicio

Ejemplo: Multiplicación de fracciones


Calcula: \cfrac{10}{6} \cdot \cfrac{4}{6} \cdot \cfrac{8}{5}

Inversa de una fracción

  • Dos fracciones son inversas cuando su producro es la unidad.
  • Toda fracción \cfrac {a}{b}, distinta de cero, tiene inversa. Su inversa es la fracción \cfrac {b}{a}.

División de fracciones

ejercicio

Procedimiento: División de fracciones


Para dividir dos fracciones, se multiplica la primera fracción por la inversa de la segunda.

El resultado es otra fracción, cuyo numerador, es el producto del primer numerador por el segundo denominador, y cuyo denominador es el producto del primer denominador por el segundo numerador.

\cfrac{a}{b} : \cfrac{c}{d}=\cfrac{a \cdot d}{b \cdot c}





ejercicio

Ejemplo:


Calcula: \cfrac{6}{5} : \cfrac{4}{15}

Potencia de una fracción

ejercicio

Procedimiento: Potencia de una fracción


Para elevar una fracción a una potencia se eleva el numerador y el denominador a dicha potencia.

\left( \cfrac{a}{b} \right) ^n =  \begin{matrix} ~ \\ \underbrace{  \cfrac{a}{b} \cdot \cfrac{a}{b} \cdot \cdots \cdot \cfrac{a}{b} } \\ n \, \mbox{veces} \end{matrix}  = \cfrac{a^n}{b^n}

Potencias de exponente negativo

Se define la potencia de exponente negativo como:

a^{-n}=\cfrac{1}{a^n} \ , \ \forall n \in \mathbb{Z} \, , \forall a \in \mathbb{Q}

Como consecuencia:

ejercicio

Propiedad


\left ( \cfrac{a}{b} \right )^{-n}=\left ( \cfrac{b}{a} \right )^{n} \, , \ \forall a, b, n \in \mathbb{Z} \ ; (a, b \ne 0)
.


Propiedades de las potencias de números racionales

Las potencias con números racionales cumplen las mismas propiedades que con números enteros.

Ver: Propiedades de las potencias de números enteros

ejercicio

Propiedades de las potencias


1. Producto de potencias de la misma base: a^m \cdot a^n=a^{n+m}

2. Cociente de potencias de la misma base: a^m : a^n=a^{m-n}\,\!

3. Potencia de un producto: a^n \cdot b^n=(a \cdot b)^n

4. Potencia de un cociente: a^n : b^n=(a : b)^n\,\!

5. Potencia de otra potencia: (a^m)^n=a^{m \cdot n}

ejercicio

Ejemplos: Potencias de fracciones


Calcula simplificando previamente:

a) \left( \cfrac{7}{6}\right)^4 \cdot \left( \cfrac{3}{7}\right)^4        b) \left( \cfrac{3}{10}\right)^3 : \left( \cfrac{6}{5}\right)^3        c) \left( \cfrac{3}{4}\right)^2 \cdot \left( \cfrac{3}{4}\right)^3        

d) \left( \cfrac{3}{4}\right)^4 : \left( \cfrac{3}{4}\right)^2        e) \left(\left( \cfrac{1}{2}\right)^2 \right)^2        f) \left( \cfrac{3}{5}\right)^0

Raíces de fracciones

Racionalización

Ver: Racionalización

Operaciones combinadas con fracciones

A la hora de operar con fracciones seguiremos las mismas pautas que con números enteros:

Ver: Jerarquía de las operaciones con números enteros

ejercicio

Jerarquía de las operaciones


A la hora de operar seguiremos las siguientes pautas:

  • Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
  • Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
  1. Las potencias y las raíces.
  2. Las multiplicaciones y las divisiones (de izquierda a derecha).
  3. Las sumas y las restas.



ejercicio

Ejemplo:


Efectúa las siguientes operaciones combinadas:

\cfrac{2}{5}+\cfrac{1}{3} \cdot \left (\cfrac{1}{2}-\cfrac{1}{5}  \right )^2

La fracción como operador

Para calcular una fracción \cfrac {a}{b} de una cantidad C\;\!, procederemos multiplicando la fracción por la cantidad: \cfrac {a}{b} \cdot C

ejercicio

Ejemplos: La fracción como operador


  1. Un cartero ha de repartir los 3/28 del total de 4004 cartas. ¿Cuántas cartas le correspoden?
  2. De una herencia de 104000 €, Alberto posee 3/8; Berta, 5/12, y Claudia, el resto. Claudia emplea 2/5 de su parte en pagar deudas. ¿Cuánto le queda?

Ejercicios y problemas

Expresión decimal de una fracción

El siguiente videotutorial resume gran parte de lo que vamos a ver en este tema.

Para saber más sobre: Números decimales.

Paso de fracción a decimal

Aunque una fracción es un valor exacto y los números decimales a veces requieren tomar aproximaciones, muchas veces resulta más cómodo trabajar con decimales que con fracciones.

ejercicio

Procedimiento


Una fracción se puede expresar como un número decimal calculando su valor, es decir, dividiendo numerador entre denominador.

Tipos de expresiones decimales de una fracción

La expresión decimal de una fracción puede ser:

  • Expresión decimal exacta: Si tiene un número finito de decimales.
  • Expresión decimal periódica pura: Si tiene un número infinito de decimales que se repiten. La parte que se repite se llama periodo.
  • Expresión decimal periódica mixta: Si tiene un número infinito de decimales que se repiten a partir de una cierta posición decimal. La parte que se repite se llama periodo y la parte decimal previa al periodo se llama anteperiodo.



Paso de decimal a fracción

Se llama fracción generatriz de un número decimal, a aquella que tiene como valor dicho número decimal.



ejercicio

Paso de decimal exacto a fracción


La fracción generatriz de un decimal exacto tiene en el numerador la expresión decimal sin la coma, y en el denominador un uno seguido de tantos ceros como cifras decimales.

ejercicio

Paso de decimal periódico puro a fracción


La fracción generatriz de un número decimal periódico puro tiene como numerador la diferencia entre a y b, donde a es el número escrito sin la coma (sin repetir el periodo) y b es la parte entera del número; y como denominador, tantos "9" como cifras tiene el periodo.

ejercicio

Paso de decimal periódico mixto a fracción


La fracción generatriz de un número decimal periódico mixto tiene como numerador la diferencia entre a y b, donde a es el número escrito sin la coma (sin repetir el periodo) y b es el número escrito sin la coma quitándole la parte decimal periódica. El denominador tendrá tantos "9" como cifras tiene el periodo y otros tantos "0" como cifras tenga el anteperiodo.

ejercicio

Ejemplos: Paso de decimal a fracción


Expresa en forma de fracción los números decimales:

a) 2.5 \;
b) 15,\widehat{34}
c) 12,3 \widehat{67}

Calculadora

Calculadora: Fracciones. Paso a decimal y viceversa


Para introducir fracciones usaremos la tecla Fracción. Esta tecla se usará también para pasar a decimal.

Actividades

Ejercicios y problemas

ejercicio

Ejercicios:


1. Agrupa las fracciones que sean equivalentes:

\cfrac {15}{20} \quad \cfrac{3}{5}\quad \cfrac{8}{16}\quad\cfrac{3}{4}\quad \cfrac{15}{25}\quad \cfrac{1}{2}\quad \cfrac{21}{28}

2. Simplifica las fracciones:

a) \cfrac{70}{14}        b) \cfrac{300}{420}        c) \cfrac{105}{60}

3. Ordena de menor a mayor las fracciones:

\cfrac {5}{12} \quad \cfrac{3}{6}\quad \cfrac{5}{8}\quad\cfrac{1}{3}

4. Opera las fracciones:

a) \cfrac{7}{6} \cdot \cfrac{-2}{14}        b) \left ( \cfrac{3}{5}-\cfrac{2}{6} \right ):\cfrac{3}{15}        c) \cfrac{\cfrac {1}{3}-\left ( \cfrac{3}{4}-\cfrac{2}{6}+1 \right )}{2+\cfrac {2}{3}}

5. Simplifica y expresa en forma de fracción:

a) \cfrac{-5^2}{5^5}        b) \cfrac{0,001}{10^2}        c) \cfrac{(a^3 \cdot b^{-2})^2}{a^4 \cdot b^{-3}}

6. Simplifica:

a) \left ( \cfrac{-1}{5} \right )^3        b) \left [ \left ( \cfrac{-1}{3} \right )^{-2} \right ]^2        c) \left ( \cfrac{-1}{3} \right )^3 \cdot \left ( \cfrac{1}{-3} \right )^{-2}

7. Calcula utilizando las propiedades de las potencias:

a)\ \frac{6^3.8^4}{3^0.3^3.2^4.2^2} \quad b)\ \frac{25^3.3^{-2}}{15^4.3^{-3}.5^4} \quad c)\ \frac{10^3.16.5^2}{100.8.25}


8. Sin hacer la división, indica qué tipo de decimal resulta:

a) \cfrac{72}{15}        b) \cfrac{72}{9}        c)\cfrac{72}{35}

8. Expresa en forma de fracción:

a) 21.379\;\!        b) 2.\widehat{23}        c) 21.45 \widehat{3}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda