Números racionales

De Wikipedia

Tabla de contenidos

Números racionales

Los números enteros son útiles para contar u ordenar objetos, pero hay veces en las que es necesario dividir la unidad en partes iguales para poder expresar una medida: la mitad, la tercera parte, etc. Estas medidas se expresan por medio de fracciones.

Una fracción es es la expresión de una cantidad dividida entre otra cantidad; es decir que representa un cociente no efectuado de números.

Se representa de la forma  \cfrac {a}{b} \, ,  con  a,b \in \mathbb{Z} , \, b \ne 0. También se puede representar a/b\;.

  • El número b\;\! se llama denominador e indica las partes iguales en que se divide la unidad.
  • El numero a\;\! se llama numerador e indica las partes que tomamos de dicha división.

El valor de una fracción es el resultado de dividir numerador entre denominador. Según el valor las fracciones pueden ser:

  • Un número entero: Si el resultado de hacer la división es exacto.
  • Un número fraccionario: Si el resultado de hacer la división no es exacto.

El conjunto de los números racionales es el conjunto de todas las fracciones:

\mathbb{Q} = \lbrace \cfrac {a}{b}\; / \; a,b \in \mathbb{Z}, \, b \ne 0 \rbrace

Fracciones propias e impropias

  • Fracciones propias son aquellas cuyo numerador (en valor absoluto) es menor que el denominador (en valor absoluto). Su valor absoluto es menor que 1.
  • Fracciones impropias son aquellas que no son propias. Su valor absoluto es mayor que 1.

Forma mixta de una fracción

Una fracción mixta o número mixto es la representación de una fracción impropia como un número entero más una fracción propia, en la que se omite el signo de suma.

a \begin{matrix} \frac{b}{c} \end{matrix}=a+\cfrac{b}{c} \ \ ,\  (b<c)

ejercicio

Proposición: De de fracción impropia a forma mixta


Toda fracción impropia, \cfrac{D}{d}\;, se puede escribir como suma de un número entero y una fracción propia. En consecuencia, toda fracción impropia se puede expresar en forma mixta:     

\cfrac{D}{d}=c+\cfrac{r}{d}=c \begin{matrix} \frac{r}{d} \end{matrix}

    

donde c\;\! es el cociente y r\;\! es el resto de la división de D\;\! entre d\;\!.

Calculadora

Calculadora: Fracciones impropias


A) Para convertir una fracción impropia a forma mixta, usaremos la tecla Fracción.
B) Para pasar de nuevo a fracción impropia pulsaremos Fracción.

Representación de fracciones en la recta numérica

ejercicio

Procedimiento


  • Para ubicar una fracción propia en la recta numérica se divide el segmento unidad en partes iguales, como indica el denominador, y se ubica la facción según indica el numerador.
  • Si la fracción es impropia se pasa a forma mixta ("valor entero" + "fracción propia") y se representa las "fracción propia" en la siguiente unidad al "valor entero" obtenido.

ejercicio

Ejemplo: Representación de fracciones en la recta numérica


Representa las fracciones:

-\cfrac{5}{2}, -\cfrac{1}{2}, \cfrac{10}{7}, \cfrac{23}{5}

Fracciones equivalentes

El siguiente videotutorial condensa todo lo visto en este apartado sobre fracciones equivalentes:

Fracciones equivalentes son aquellas que, aún teniendo distinto numerador y denominador, tienen el mismo valor.

ejercicio

Obtención de fracciones equivalentes a una dada


Si multiplicamos o dividimos el numerador y denominador por un mismo número, se obtienen fracciones equivalentes. Por tanto, toda fracción tiene infinitas fracciones equivalentes a ella.

ejercicio

Comprobación de que dos fracciones son equivalentes


Para saber si dos fracciones son equivalentes, comprobaremos que los productos cruzados de sus numeradores y denominadores coinciden.

\cfrac{a}{b}=\cfrac{c}{d} \quad\Leftrightarrow\quad a \cdot d=b \cdot c

Si nos dan dos fracciones equivalentes y en una de ellas desconocemos uno de sus términos, utilizaremos el resultado anterior para averiguarlo.

Simplificación de fracciones

  • Simplificar una fracción es sustituirla por otra equivalente con el numerador y denominador menores que los de partida.
  • Cuando una fracción no se puede simplificar se dice que es irreducible.

ejercicio

Procedimiento


  • Para simplificar fracciones se divide numerador y denominador por un mismo número, distinto de 1. Este proceso se puede repetir hasta hacer la fracción irreducible.
  • Si queremos hacer la fracción irreducible en un solo paso debemos dividir numerador y denominador por el m.c.d. de ambos.

Recucir fracciones a común denominador

Reducir fracciones a común denominador, consiste en encontrar fracciones equivalentes a las dadas con el mismo denominador

ejercicio

Reducir fracciones a común denominador


  1. Calculamos el mínimo común múltiplo de los denominadores.
  2. Como denominador de las nuevas fracciones ponemos el m.c.m. calculado antes.
  3. Como numerador de cada nueva fracción, ponemos el resultado de dividir el m.c.m. entre el denominador y multiplicar por el numerador.

Ordenación de fracciones

Una forma de comparar fracciones consistía en calcular su valor numérico, efectuando la división. Vamos a ver otro procedimiento.

ejercicio

Ordenar fracciones


  • De dos fracciones con el mismo denominador, es mayor la de mayor numerador.
  • Para ordenar fracciones con distinto denominador debemos primero reducirlas a común denominador.

ejercicio

Ejemplo: Ordenar fracciones


Ordena las siguientes fracciones: \cfrac{4}{6} \, , \ \cfrac{3}{4}  \, \ y \ \cfrac{1}{2}

Actividades

Operaciones con fracciones

Suma y resta de fracciones

Para sumar o restar fracciones:

  • Si las fracciones son homogéneas (mismo denominador), se suman o restan los numeradores y se pone el mismo denominador.
  • Si son heterogéneas (distinto denominador), primero se reducen a común denominador y luego se procede como en el caso anterior.

Si alguno de los sumandos es un número entero, se le considera como una fracción con denominador unidad.

ejercicio

Ejemplo: Suma y resta de fracciones


Calcula: 2+\cfrac{3}{4} + \cfrac{4}{6} - \cfrac{1}{2}

Multiplicación y división de fracciones

Multiplicación de fracciones

Para multiplicar fracciones, se pone como numerador, el producto de los numeradores, y como denominador, el producto de los denominadores.

\cfrac{a}{b} \cdot \cfrac{c}{d}=\cfrac{a \cdot c}{b \cdot d}

Nota: Es conveniente simplificar los numeradores entre los denominadores antes de efectuar los productos.

ejercicio

Ejemplo: Multiplicación de fracciones


Calcula: \cfrac{10}{6} \cdot \cfrac{4}{6} \cdot \cfrac{8}{5}

División de fracciones

Para dividir dos fracciones, se multiplica la primera fracción por la inversa de la segunda.

El resultado es otra fracción, cuyo numerador, es el producto del primer numerador por el segundo denominador, y cuyo denominador es el producto del primer denominador por el segundo numerador.

\cfrac{a}{b} : \cfrac{c}{d}=\cfrac{a \cdot d}{b \cdot c}

ejercicio

Ejemplo:


Calcula: \cfrac{6}{5} : \cfrac{4}{15}

Potencia de una fracción

Para elevar una fracción a una potencia se eleva el numerador y el denominador a dicha potencia.

\left( \cfrac{a}{b} \right) ^n =  \begin{matrix} ~ \\ \underbrace{  \cfrac{a}{b} \cdot \cfrac{a}{b} \cdot \cdots \cdot \cfrac{a}{b} } \\ n \, \mbox{veces} \end{matrix}  = \cfrac{a^n}{b^n}

Potencias de exponente negativo

Se define la potencia de exponente negativo como:

a^{-n}=\cfrac{1}{a^n} \ , \ \forall n \in \mathbb{Z} \, , \forall a \in \mathbb{Q}

Como consecuencia:

ejercicio

Propiedad


\left ( \cfrac{a}{b} \right )^{-n}=\left ( \cfrac{b}{a} \right )^{n} \, , \ \forall a, b, n \in \mathbb{Z}
.


Propiedades de las potencias de números racionales

Las potencias con números racionales cumplen las mismas propiedades que con números enteros.

Ver: Propiedades de las potencias de números enteros

ejercicio

Propiedades de las potencias


1. Producto de potencias de la misma base: a^m \cdot a^n=a^{n+m}

2. Cociente de potencias de la misma base: a^m : a^n=a^{m-n}\,\!

3. Potencia de un producto: a^n \cdot b^n=(a \cdot b)^n

4. Potencia de un cociente: a^n : b^n=(a : b)^n\,\!

5. Potencia de otra potencia: (a^m)^n=a^{m \cdot n}

ejercicio

Ejemplos: Potencias de fracciones


Calcula simplificando previamente:

a) \left( \cfrac{7}{6}\right)^4 \cdot \left( \cfrac{3}{7}\right)^4        b) \left( \cfrac{3}{10}\right)^3 : \left( \cfrac{6}{5}\right)^3        c) \left( \cfrac{3}{4}\right)^2 \cdot \left( \cfrac{3}{4}\right)^3        

d) \left( \cfrac{3}{4}\right)^4 : \left( \cfrac{3}{4}\right)^2        e) \left(\left( \cfrac{1}{2}\right)^2 \right)^2        f) \left( \cfrac{3}{5}\right)^0

Operaciones combinadas con fracciones

A la hora de operar con fracciones seguiremos las mismas pautas que con números enteros y naturales:

Ver: Jerarquía de las operaciones con números naturales

Ver: Jerarquía de las operaciones con números enteros

ejercicio

Jerarquía de las operaciones


A la hora de operar seguiremos las siguientes pautas:

  • Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
  • Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
  1. Las potencias y las raíces.
  2. Las multiplicaciones y las divisiones.
  3. Las sumas y las restas.

ejercicio

Ejemplo:


Efectúa las siguientes operaciones combinadas:

\cfrac{2}{5}+\cfrac{1}{3} \cdot \left (\cfrac{1}{2}-\cfrac{1}{5}  \right )

La fracción como operador

Para calcular una fracción \cfrac {a}{b} de una cantidad C\;\!, procederemos multiplicando la fracción por la cantidad: \cfrac {a}{b} \cdot C

ejercicio

Ejemplos: La fracción como operador


  1. Un cartero ha de repartir los 3/28 del total de 4004 cartas. ¿Cuántas cartas le correspoden?
  2. De una herencia de 104000 €, Alberto posee 3/8; Berta, 5/12, y Claudia, el resto. Claudia emplea 2/5 de su parte en pagar deudas. ¿Cuánto le queda?

Ejercicios y problemas

Expresión decimal de una fracción

El siguiente videotutorial resume gran parte de lo que vamos a ver en este tema.

Para saber más sobre: Números decimales.

Paso de fracción a decimal

Aunque una fracción es un valor exacto y los números decimales a veces requieren tomar aproximaciones, muchas veces resulta más cómodo trabajar con decimales que con fracciones.

ejercicio

Procedimiento


Una fracción se puede expresar como un número decimal calculando su valor, es decir, dividiendo numerador entre denominador.

La expresión decimal puede ser:

  • Expresión decimal exacta: Si tiene un número finito de decimales.
  • Expresión decimal periódica pura: Si tiene un número infinito de decimales que se repiten. La parte que se repite se llama periodo.
  • Expresión decimal periódica mixta: Si tiene un número infinito de decimales que se repiten a partir de una cierta posición decimal. La parte que se repite se llama periodo y la parte decimal previa al periodo se llama anteperiodo.

Paso de decimal a fracción

Se llama fracción generatriz de un número decimal, a aquella que tiene como valor dicho número decimal.

Toda fracción se puede pasar a forma decimal, sin embargo, lo contrario no es cierto: sólo se pueden pasar a fracción aquellos decimales que sean exactos o periódicos. Cuando el número de decimales es infinito y no periódico, como ocurre con el número pi (π), no podemos expresarlo en forma de fracción.

ejercicio

Paso de decimal exacto a fracción


La fracción generatriz de un decimal exacto tiene en el numerador la expresión decimal sin la coma, y en el denominador un uno seguido de tantos ceros como cifras decimales.

ejercicio

Paso de decimal periódico puro a fracción


La fracción generatriz de un número decimal periódico puro tiene como numerador la diferencia entre a y b, donde a es el número escrito sin la coma (sin repetir el periodo) y b es la parte entera del número; y como denominador, tantos "9" como cifras tiene el periodo.

ejercicio

Paso de decimal periódico mixto a fracción


La fracción generatriz de un número decimal periódico mixto tiene como numerador la diferencia entre a y b, donde a es el número escrito sin la coma (sin repetir el periodo) y b es el número escrito sin la coma quitándole la parte decimal periódica. El denominador tendrá tantos "9" como cifras tiene el periodo y otros tantos "0" como cifras tenga el anteperiodo.

ejercicio

Ejemplos: Paso de decimal a fracción


Expresa en forma de fracción los números decimales:

a) 2.5 \;
b) 15,\widehat{34}
c) 12,3 \widehat{67}

Calculadora

Calculadora: Fracciones. Paso a decimal y viceversa


Para introducir fracciones usaremos la tecla Fracción. Esta tecla se usará también para pasar a decimal.

Actividades

Ejercicios y problemas

ejercicio

Ejercicios:


1. Agrupa las fracciones que sean equivalentes:

\cfrac {15}{20} \quad \cfrac{3}{5}\quad \cfrac{8}{16}\quad\cfrac{3}{4}\quad \cfrac{15}{25}\quad \cfrac{1}{2}\quad \cfrac{21}{28}

2. Simplifica las fracciones:

a) \cfrac{70}{14} b) \cfrac{300}{420} c) \cfrac{105}{60}

3. Ordena de menor a mayor las fracciones:

\cfrac {5}{12} \quad \cfrac{3}{6}\quad \cfrac{5}{8}\quad\cfrac{1}{3}

4. Opera las fracciones:

a) \cfrac{7}{6} \cdot \cfrac{-2}{14} b) \left ( \cfrac{3}{5}-\cfrac{2}{6} \right ):\cfrac{3}{15} c) \cfrac{\cfrac {1}{3}-\left ( \cfrac{3}{4}-\cfrac{2}{6}+1 \right )}{2+\cfrac {2}{3}}

5. Simplifica y expresa en forma de fracción:

a) \cfrac{-5^2}{5^5} b) \cfrac{0,001}{10^2} c) \cfrac{(a^3 \cdot b^{-2})^2}{a^4 \cdot b^{-3}}

6. Simplifica:

a) \left ( \cfrac{-1}{5} \right )^3 b) \left [ \left ( \cfrac{-1}{3} \right )^{-2} \right ]^2 c) \left ( \cfrac{-1}{3} \right )^3 \cdot \left ( \cfrac{1}{-3} \right )^{-2}

7. Calcula utilizando las propiedades de las potencias:

a)\ \frac{6^3.8^4}{3^0.3^3.2^4.2^2} \quad b)\ \frac{25^3.3^{-2}}{15^4.3^{-3}.5^4} \quad c)\ \frac{10^3.16.5^2}{100.8.25}


8. Sin hacer la división, indica qué tipo de decimal resulta:

a) \cfrac{72}{15} b) \cfrac{72}{9} c)\cfrac{72}{35}

8. Expresa en forma de fracción:

a) 21'379\;\! b) 2'\widehat{23} c) 21'45 \widehat{3}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda