Potencias y raíces de números enteros (2º ESO)

De Wikipedia

Revisión de fecha 02:02 1 oct 2020; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Tabla de contenidos

(Pág. 36)

Potencias de números enteros

Los siguientes videotutoriales condensan lo que vamos a ver en este apartado sobre potencias de números enteros:


Definición de potencia

La definición de potencia de exponente entero es la misma que la de números naturales.

Ver: Potencias de números naturales

Una potencia es un modo abreviado de escribir un producto de un número por sí mismo:

\begin{matrix}  a^b = \, \\ \; \end{matrix} \begin{matrix} \underbrace{ a \cdot a \cdots a } \\ b \, \mbox{veces} \end{matrix}         (Se lee: "a\; elevado a b\;")
  • El número a\; se llama base. Es el número que se multiplica por sí mismo.
  • El número b\; se llama exponente. Es el número que indica las veces que la base aparece como factor.
  • Por convenio, se establece que: a^0=1 \ ,\ \ \forall a \ne 0\;.
  • Cuando el exponente de una potencia es el número 1 no se pone exponente, basta con poner el número de la base.



Imagen:potenciass.gif

¡Ojo, no confundir!

Signo de la potencia

ejercicio

Signo de la potencia


Dependiendo del signo de la base tenemos dos posibilidades:

  • Base positiva: Al elevar un número positivo a una potencia, el resultado es positivo.
  • Base negativa: Al elevar un número negativo a una potencia, el resultado es positivo si el exponente es par y negativo si es impar.

Propiedades de las potencias de enteros

Las potencias de números enteros cumplen las mismas propiedades que las potencias de números naturales.

Ver: Propiedades de las potencias de números naturales

ejercicio

Propiedades de las potencias


1. Producto de potencias de la misma base: a^m \cdot a^n=a^{n+m}

2. Cociente de potencias de la misma base: a^m : a^n=a^{m-n}\,\!

3. Potencia de un producto: a^n \cdot b^n=(a \cdot b)^n

4. Potencia de un cociente: a^n : b^n=(a : b)^n\,\!

5. Potencia de otra potencia: (a^m)^n=a^{m \cdot n}

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Potencias con números enteros


(Pág. 36)

2; 3; 5; 6

1

ejercicio

Ejercicios propuestos: Propiedades de las potencias con números enteros


(Pág. 38)

7a,c,e; 8; 9; 11; 12; 14; 15; 18; 20; 21a,c,e; 22a,c,e;

7b,d; 10; 13; 16; 17; 19; 21b,d,f; 22a,c,e;

Raíces cuadradas de números enteros

La definición de raíz cuadrada de un número entero es la misma que la dada para números naturales.

Ver: Raíz de un número natural

La raíz cuadrada de un número a\; es otro número b\; que elevado al cuadrado da a\;. Simbólicamente:

\sqrt{a}=b \ \iff \ b^2=a

Al número a\; se le llama radicando y al número b\; se le llama raíz.

Número de soluciones de una raíz cuadrada

Dependiendo del signo del número entero, su raíz puede existir o no. Tenemos los dos casos siguientes:

ejercicio

Número de soluciones de la raíz cuadrada


  • La raíz cuadrada de un número entero positivo tiene dos soluciones iguales pero opuestas en signo, que no siempre son números enteros.
  • La raíz cuadrada de un número entero negativo no existe.

Raíces cuadradas con la calculadora

Calculadora

Calculadora: Raíz cuadrada


Para calcular raíces cuadradas usaremos la tecla Raíz cuadrada.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Raíces de números enteros


(Pág. 39)

1, 2

Raíces cúbicas

La raíz cúbica de un número a\; es otro número b\; que elevado al cubo da a\;. Simbólicamente:

\sqrt[3]{a}=b \ \iff \ b^3=a

Al número a\; se le llama radicando y al número b\; se le llama raíz.

Número de soluciones de una raíz cúbica

Con las raíces cuadradas, dependiendo del signo del número entero, su raíz puede existir o no. Con las raíces cúbicas siempre existe, pero es única.

ejercicio

Número de soluciones de la raíz cúbica


La raíz cúbica de un número entero tiene una única solución, que tiene el mismo signo que el radicando.

Raíces de otros índices (Ampliación)

La raíz n-ésima (n \in \mathbb{N},\ n>1)de un número a \; es otro número b \; tal que b^n =a\;\! y que escribimos simbólicamente b=\sqrt[n]{a}.

\sqrt[n]{a}=b \iff b^n =a

El número a\;\! se llama radicando, el número n\;\! índice y b\;\! la raíz.



Propiedades

ejercicio

Propiedades


  • \sqrt[n]{1}=1  ;  \sqrt[n]{0}=0 , para cualquier valor del índice n\;\!.
  • Si a>0\;\!, \sqrt[n]{a} existe cualquiera que sea el índice n\;\!.
  • Si a<0\;\!, \sqrt[n]{a} sólo existe si el índice n\;\! es impar.
  • Si el índice n\;\! es par y el radicando a>0\;\!, la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto.
  • Si el índice n\;\! es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando a\;\!.

Operaciones combinadas con números enteros

A la hora de operar con números enteros utilizaremos la misma jerarquía de operaciones que con números naturales:

Ver: Jerarquía de las operaciones con números naturales

ejercicio

Jerarquía de las operaciones


A la hora de operar seguiremos las siguientes pautas:

  • Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
  • Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
  1. Las potencias y las raíces.
  2. Las multiplicaciones y las divisiones (de izquierda a derecha).
  3. Las sumas y las restas.



Problemas resueltos

ejercicio

Problemas: Operaciones con enteros


1. Estamos en la planta 345 de un gran rascacielos del futuro y bajamos en ascensor a la planta -15. ¿Cuánto tiempo tardaremos si el ascensor tarda 1 segundo en bajar 5 pisos?
2. Pitágoras, filósofo y matemático griego, nació el año 582 a.C. y murió el año 496 a.C. ¿A qué edad murio? ¿Cuántos años han pasado hasta el año 2007 d.C. desde su muerte?
3. Durante el ascenso a una montaña, la temperatura desciende 2 grados cada 200 m de ascenso. ¿A qué altura habrá que ascender para alcanzar -15ºC, si en el punto de partida, la temperatura es de 5ºC y este está a una altitud de 300 m?

Calculadora

Suma, resta, multiplicación y división

Calculadora

Calculadora: Suma, resta, multiplicación y división


Para sumar, restar, multiplicar y dividir usaremos las teclas Suma, Resta, Multiplicación y División.

Opuesto

Calculadora

Calculadora: Opuesto


Para poner el opuesto de un número usaremos la tecla Cambio de signo.

Paréntesis

Calculadora

Calculadora: Paréntesis


Para abrir y cerrar paréntesis usaremos las teclas Abre paréntesis yCierra paréntesis.

Potencias

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Raíz cuadrada

Calculadora

Calculadora: Raíz cuadrada


Para calcular raíces cuadradas usaremos la tecla Raíz cuadrada.

Raíz cúbica

Calculadora

Calculadora: Raíz cúbica


Para calcular raíces cúbicas usaremos la tecla Raíz cúbica.

Otras raíces

Calculadora

Calculadora: Otras raíces


Para calcular la raíz cuarta, quinta, etc., usaremos la tecla Raíz de índice x.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda