Números enteros: Operaciones

De Wikipedia

Tabla de contenidos

Introducción

Un toque divertido para empezar el tema:

Las operaraciones con enteros son similares a las operaciones con naturales, pero con las peculiaridades que aportan los números negativos. Veamos un video a modo de introducción.

Suma y resta de enteros

Suma y resta de dos números enteros

  • La suma de números enteros es otro número entero.
  • La resta de números enteros es otro número entero resultado de sumar el primero con el opuesto del segundo.

ejercicio

Procedimiento


  • Cuando los dos números llevan el mismo signo: Se suman los valores absolutos y se pone el mismo signo que tenían los números.
  • Cuando los dos números llevan distinto signo: Se restan los valores absolutos y se pone el signo del que tenga mayor valor absoluto.

Suma y resta de más de dos números enteros

Cuando sumemos más de dos números enteros podemos proceder de dos formas:

  • Método 1: Sumar los positivos por un lado y los negativos por otro y, después, efectuar la resta de los resultados.
  • Método 2: Ir sumando o restando paso a paso, de izquierda a derecha.

Propiedades de la suma y de la resta de números enteros

ejercicio

Propiedades de la suma


  • Operación interna: el resultado de sumar dos números enteros es otro número entero.
a, \, b \in \mathbb{Z} \Rightarrow a + b \in \mathbb{Z}
  • Propiedad conmutativa: La suma no varía al cambiar el orden de los sumandos.

a+b = b+a\,

  • Propiedad asociativa: El resultado de la suma es independiente de la forma en que se agrupen los sumandos.

(a + b ) + c = a + ( b + c )\,
  • Elemento neutro: El elemento neutro para la suma es el 0.

0 + a = a \,
  • Elemento opuesto: Todo número entero, a\;, tiene un opuesto, -a\;, que al sumarse con él da el elemento neutro.

a + (-a) = 0\;

ejercicio

Propiedades de la resta


  • Operación interna: el resultado de restar dos números enteros es otro número entero.
a, \, b \in \mathbb{Z} \Rightarrow a - b \in \mathbb{Z}
  • Propiedad conmutativa: No se cumple
  • Propiedad asociativa: No se cumple

Multiplicación o producto de números enteros

ejercicio

Regla de los signos para el producto


  • Si dos números enteros tienen el mismo signo su producto es un entero positivo.
  • Si dos números enteros tienen distinto signo, el producto es un entero negativo.
(+) \cdot (+) = (+)
(-) \cdot (-) = (+)
(+) \cdot (-) = (-)
(-) \cdot (+) = (-)

Propiedades del producto de números enteros

ejercicio

Propiedades de la multiplicación


  • Operación interna: El producto de dos números enteros es otro número entero:
a , \, b \in \mathbb{Z} \Rightarrow a \cdot b \in \mathbb{Z}
  • Propiedad conmutativa: El producto no varía al cambiar el orden de los factores.

a \cdot b = b \cdot a\,

  • Propiedad asociativa: El resultado de una multiplicación es independiente de la forma en que se agrupen los factores.

(a + b ) + c = a + ( b + c )\,
  • Propiedad distributiva: El producto de un número por una suma (o resta) es igual a la suma (o resta) de los productos del número por cada sumando.

a \cdot (b + c ) = a \cdot b + a \cdot c \qquad a \cdot (b - c ) = a \cdot b - a \cdot c

  • Elemento neutro: El elemento neutro para la multiplicación es el 1.

1 \cdot a = a \,

División o cociente de números enteros

ejercicio

Regla de los signos para el cociente


Con la división , al igual que con la multiplicación, se aplica la misma regla de los signos:

(+) : (+) = (+)\,
(-) : (-) = (+)\,
(+) : (-) = (-)\,
(-) : (+) = (-)\,

Propiedades de la división de números enteros

ejercicio

Propiedades de la división de números enteros


  • La división de de números enteros no siempre es un número entero.
  • La división de números enteros no tiene las mismas propiedades que producto. No tiene la propiedad conmutativa, ni la asociativa, ni la distributiva.

Actividades y videotutoriales

Operaciones combinadas con números enteros

A la hora de operar con números enteros utilizaremos la misma jerarquía de operaciones que con números naturales:

Ver: Jerarquía de las operaciones con números naturales

ejercicio

Jerarquía de las operaciones


A la hora de operar seguiremos las siguientes pautas:

  • Primero se efectúan las operaciones del interior de los paréntesis. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.
  • Dentro de los paréntesis, o una vez quitados todos los paréntesis, las operaciones se efectúan en el siguiente orden:
  1. Las potencias y las raíces.
  2. Las multiplicaciones y las divisiones.
  3. Las sumas y las restas.

ejercicio

Ejercicio resuelto: Operaciones combinadas con enteros


        a) [8-(-6)]:(+7)+(-9)\;

        b) 18-(-2) \cdot[(+15):(8-11)]\;

Calculadora

Suma, resta, multiplicación y división

Calculadora

Calculadora: Suma, resta, multiplicación y división


Para sumar, restar, multiplicar y dividir usaremos las teclas Suma, Resta, Multiplicación y División.

Opuesto

Calculadora

Calculadora: Opuesto


Para poner el opuesto de un número usaremos la tecla Cambio de signo.

Paréntesis

Calculadora

Calculadora: Paréntesis


Para abrir y cerrar paréntesis usaremos las teclas Abre paréntesis yCierra paréntesis.

Potencias

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Ejercicios y problemas

ejercicio

Problemas: Operaciones con enteros


1. Estamos en la planta 345 de un gran rascacielos del futuro y bajamos en ascensor a la planta -15. ¿Cuánto tiempo tardaremos si el ascensor tarda 1 segundo en bajar 5 pisos?
2. Pitágoras, filósofo y matemático griego, nació el año 582 a.C. y murió el año 496 a.C. ¿A qué edad murio? ¿Cuántos años han pasado hasta el año 2007 d.C. desde su muerte?
3. Durante el ascenso a una montaña, la temperatura desciende 2 grados cada 200 m de ascenso. ¿A qué altura habrá que ascender para alcanzar -15ºC, si en el punto de partida, la temperatura es de 5ºC y este está a una altitud de 300 m?
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda