Números enteros: Operaciones

De Wikipedia

(Diferencia entre revisiones)
Revisión de 08:29 8 oct 2014
Coordinador (Discusión | contribuciones)
(Wiris)
← Ir a diferencia anterior
Revisión de 08:05 6 sep 2016
Coordinador (Discusión | contribuciones)
(Jerarquía de las operaciones con enteros)
Ir a siguiente diferencia →
Línea 20: Línea 20:
{{Multiplicación y cociente de números enteros}} {{Multiplicación y cociente de números enteros}}
{{p}} {{p}}
 +{{wolfram operaciones combinadas}}
==Calculadora== ==Calculadora==

Revisión de 08:05 6 sep 2016

Las operaraciones con enteros son similares a las operaciones con naturales, pero con las peculiaridades que aportan los números negativos.

Tabla de contenidos

Opuesto de un entero

El opuesto de un número entero, a\;\!, es otro número entero, -a\;\!, simétrico de a\;\! respecto del cero. En consecuencia, se encuentra a la misma distancia del cero que a\;\!, pero tiene signo contrario. Lo escribiremos Op(a)=-a\;.



Valor absoluto de un entero

El valor absoluto de un número entero a\; se representa por |a|\; y se define de la siguiente manera:

  • Si el número es positivo, su valor absoluto es él mismo.
  • Si el número es negativo, su valor absoluto es igual a su opuesto.

ejercicio

Propiedades


  • El valor absoluto de un número es la distancia que lo separa del cero en la recta numérica.
  • El valor absoluto de un número siempre es positivo o cero.
  • El valor absoluto de cero es cero.

Suma y resta de enteros

Suma y resta de dos números enteros

Sabemos que los números enteros pueden tener signo positivo (un más o nada delante del número) o signo negativo (un menos delante del número). Sin embargo, cuando dos enteros aparecen juntos, sus signos expresan una operación.

  • Suma: Siempre que vemos dos enteros juntos, sin más separación entre ellos que sus signos, lo que tenemos delante es una suma. Para realizar esa suma puedes guiarte por la lógica: los números negativos representan pérdidas, los positivos ganancias y el resultado de la operación es el balance entre ganancias y pérdidas.
  • Resta: La resta de números enteros es el resultado de sumar el primero con el opuesto del segundo.

Siguiendo esa lógica de balance entre pérdidas y ganancias, para sumar números enteros seguiremos las siguientes reglas:

ejercicio

Procedimiento: Suma de números enteros


Dependiendo del signo de los dos números a sumar, tenemos que:

  • Si tienen el mismo signo, se suman los valores absolutos y se pone el mismo signo que tenían los números.
  • Si tienen distinto signo, se restan los valores absolutos (el mayor valor absoluto menos el menor) y se pone el signo del que tenga mayor valor absoluto.

Suma y resta de más de dos números enteros

Cuando sumemos más de dos números enteros podemos proceder de dos formas:

  • Método 1: Sumar los positivos por un lado y los negativos por otro y, después, efectuar la resta de los resultados.
  • Método 2: Ir sumando o restando paso a paso, de izquierda a derecha.

Sumas y restas con paréntesis

Al operar, no pueden juntarse dos signos. Se deben separar con paréntesis y se aplicarán las siguientes reglas:

ejercicio

Reglas


  • +(+a)=+a\,
  • +(-a)=-a\,
  • -(+a)=-a\,
  • -(-a)=+a\,

ejercicio

Procedimiento para quitar paréntesis


A) Si dentro del paréntesis tenemos varias sumas y restas podemos proceder de dos formas:

  • Método 1: Efectuar las operaciones dentro del paréntesis hasta que quede un solo número entero en su interior y a continuación proceder siguiendo las reglas anteriormente vistas.
  • Método 2: Si delante del paréntesis hay un signo más (+), se quitaran los paréntesis dejando los números del interior con el mismo signo. Pero si delante hay un signo menos (-), los números de dentro cambiarán de signo.
B) Si hay paréntesis dentro de otros paréntesis (o corchetes), se efectuaran primero los más interiores.

Jerarquía de las operaciones con enteros

Plantilla:Jerarquía de las operaciones con enteros

Multiplicación o producto de números enteros

ejercicio

Regla de los signos para el producto


  • Si dos números enteros tienen el mismo signo su producto es un entero positivo.
  • Si dos números enteros tienen distinto signo, el producto es un entero negativo.
(+) \cdot (+) = (+)
(-) \cdot (-) = (+)
(+) \cdot (-) = (-)
(-) \cdot (+) = (-)



Propiedades del producto de números enteros

ejercicio

Propiedades de la multiplicación


  • Operación interna: El producto de dos números enteros es otro número entero:
a , \, b \in \mathbb{Z} \Rightarrow a \cdot b \in \mathbb{Z}
  • Propiedad conmutativa: El producto no varía al cambiar el orden de los factores.

a \cdot b = b \cdot a\,

  • Propiedad asociativa: El resultado de una multiplicación es independiente de la forma en que se agrupen los factores.

(a + b ) + c = a + ( b + c )\,
  • Propiedad distributiva: El producto de un número por una suma (o resta) es igual a la suma (o resta) de los productos del número por cada sumando.

a \cdot (b + c ) = a \cdot b + a \cdot c \qquad a \cdot (b - c ) = a \cdot b - a \cdot c

  • Elemento neutro: El elemento neutro para la multiplicación es el 1.

1 \cdot a = a \,



La propiedad distributiva tiene una especie de propiedad "recíproca" que llamaremos sacar factor comun. En realidad es la misma propiedad, pero usada "al revés". La idea es buscar un divisor común a todos los sumandos que tengamos y "sacarlo" fuera del paréntesis en el que meteremos al resultado de dividir a cada uno de los sumandos por ese factor.



División o cociente de números enteros

ejercicio

Regla de los signos para el cociente


Con la división , al igual que con la multiplicación, se aplica la misma regla de los signos:

(+) : (+) = (+)\,
(-) : (-) = (+)\,
(+) : (-) = (-)\,
(-) : (+) = (-)\,

Propiedades de la división de números enteros

ejercicio

Propiedades de la división de números enteros


  • La división de de números enteros no siempre es un número entero.
  • La división de números enteros no tiene las mismas propiedades que producto. No tiene la propiedad conmutativa, ni la asociativa, ni la distributiva.

Al no tener la división de números enteros la propiedad asociativa, si aparecen varias divisiones consecutivas, sin paréntesis, tienen que hacerse de izquierda a derecha.

Actividades y videotutoriales

wolfram

Actividad: Operaciones combinadas


Calcula:
a) 12+3 \cdot 2^3-(5-3)


Calculadora

Suma, resta, multiplicación y división

Calculadora

Calculadora: Suma, resta, multiplicación y división


Para sumar, restar, multiplicar y dividir usaremos las teclas Suma, Resta, Multiplicación y División.

Opuesto

Calculadora

Calculadora: Opuesto


Para poner el opuesto de un número usaremos la tecla Cambio de signo.

Paréntesis

Calculadora

Calculadora: Paréntesis


Para abrir y cerrar paréntesis usaremos las teclas Abre paréntesis yCierra paréntesis.

Potencias

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Wiris

ejercicio

WIRIS: Operaciones con números naturales


Utiliza el editor para calcular:

\cfrac{14 \cdot(5-3)^2}{9-2}

Comprueba el resultado también con tu calculadora. (Solución: 8)

Ejercicios y problemas

Ejercicios

wolfram

Actividad: Operaciones con enteros


Calcula:
a) 16-(9-5)-5+2= \,\!
b) (-15-13)-9-(2-12+6)= \,\!
c) (-3) \cdot [5 \cdot (8-6) -3 \cdot (3-7)]=

Problemas

ejercicio

Problemas: Operaciones con enteros


1. Estamos en la planta 345 de un gran rascacielos del futuro y bajamos en ascensor a la planta -15. ¿Cuánto tiempo tardaremos si el ascensor tarda 1 segundo en bajar 5 pisos?
2. Pitágoras, filósofo y matemático griego, nació el año 582 a.C. ¿Cuántos años han pasado hasta el año 2007 d.C.?
3. Durante el ascenso a una montaña, la temperatura desciende 2 grados cada 200 m de ascenso. ¿A qué altura habrá que ascender para alcanzar -15ºC, si en el punto de partida, la temperatura es de 5ºC y este está a una altitud de 300 m?
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda